Skip to main content
Log in

Manipulating transmission and reflection properties of a photonic crystal doped with quantum dot nanostructures

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The transmission and reflection properties of incident light in a defect dielectric structure is studied theoretically. The defect structure consists of donor and acceptor quantum dot nanostructures embedded in a photonic crystal. It is shown that the transmission and reflection properties of incident light can be controlled by adjusting the corresponding parameters of the system. The role of dipole–dipole interaction is considered as a new parameter in our calculations. It is noted that the features of transmission and reflection curves can be adjusted in the presence of dipole–dipole interaction. It is found that the absorption of weak probe light can be converted to the probe amplification in the presence of dipole–dipole interaction. Moreover, the group velocity of transmitted and reflected probe light is discussed in detail in the absence and presence of dipole–dipole interaction. Our proposed model can be used as a new all-optical devices based on photonic materials doped with nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wu, J. Saldana, and Y. Zhu, Phys. Rev. A 67, 013811 (2003).

    Article  ADS  Google Scholar 

  2. Y. Wu and X. Yang, Phys. Rev. A 71, 053806 (2005).

    Article  ADS  Google Scholar 

  3. X.-X. Yang, Z.-W. Li, and Y. Wu, Phys. Lett. A 340, 320 (2005).

    Article  ADS  Google Scholar 

  4. S. Liu, J. Li, R. Yu, and Y. Wu, Phys. Rev. A 87, 042306 (2013).

    Article  ADS  Google Scholar 

  5. H. Xiong, L. Si, X. Lv, X. Yang, and Y. Wu, Sci. Chin. Phys. Mech. Astron. 58, 050302 (2015).

    Article  Google Scholar 

  6. Z. Wang, Opt. Commun. 282, 4745 (2009).

    Article  ADS  Google Scholar 

  7. Z. Wang, B. Yu, J. Zhu, Z. Cao, S. Zhen, X. Wu, et al., Ann. Phys. 327, 1132 (2012).

    Article  ADS  Google Scholar 

  8. J.-H. Li, Phys. Rev. B 75, 155329 (2007).

    Article  ADS  Google Scholar 

  9. J. Li, R. Yu, X. Hao, A. Zheng, and X. Yang, Opt. Commun. 282, 4384 (2009).

    Article  ADS  Google Scholar 

  10. J. Li, R. Yu, L. Si, X. Lu, and X. Yang, J. Phys. B: At. Mol. Opt. Phys. 42, 055509 (2009).

    Article  ADS  Google Scholar 

  11. W.-X. Yang, A.-X. Chen, L.-G. Si, K. Jiang, X. Yang, and R.-K. Lee, Phys. Rev. A 81, 023814 (2010).

    Article  ADS  Google Scholar 

  12. W.-X. Yang, J.-M. Hou, Y. Lin, and R.-K. Lee, Phys. Rev. A 79, 033825 (2009).

    Article  ADS  Google Scholar 

  13. W.-X. Yang, S. Liu, Z. Zhu, and R.-K. Lee, Opt. Lett. 40, 3133 (2015).

    Article  ADS  Google Scholar 

  14. E. Paspalakis and P. Knight, Phys. Rev. A 66, 015802 (2002).

    Article  ADS  Google Scholar 

  15. A. Joshi, S. Hassan, and M. Xiao, Phys. Rev. A 72, 055803 (2005).

    Article  ADS  Google Scholar 

  16. S. Dutta and K. R. Dastidar, J. Phys. B: At. Mol. Opt. Phys. 40, 4287 (2007).

    Article  ADS  Google Scholar 

  17. S. Dutta and K. R. Dastidar, Mol. Phys. 110, 431 (2012).

    Article  ADS  Google Scholar 

  18. H. Sattari and M. Sahrai, Opt. Commun. 311, 83 (2013).

    Article  ADS  Google Scholar 

  19. W.-X. Yang, W.-H. Ma, L. Yang, G.-R. Zhang, and R.-K. Lee, Opt. Commun. 324, 221 (2014).

    Article  ADS  Google Scholar 

  20. L.-G. Wang, H. Chen, and S.-Y. Zhu, Phys. Rev. E 70, 066602 (2004).

    Article  ADS  Google Scholar 

  21. D. Jafari, M. Sahrai, H. Motavalli, and M. Mahmoudi, Phys. Rev. A 84, 063811 (2011).

    Article  ADS  Google Scholar 

  22. Ziauddin, Y.-L. Chuang, R.-K. Lee, and S. Qamar, Laser Phys. 26, 015205 (2016).

    Article  ADS  Google Scholar 

  23. M. R. Singh, J. Mod. Opt. 54, 1739 (2007).

    Article  ADS  Google Scholar 

  24. M. R. Singh, Phys. Lett. A 363, 177 (2007).

    Article  ADS  Google Scholar 

  25. M. R. Singh, Phys. Rev. A 79, 174520 (2009).

    ADS  Google Scholar 

  26. M. R. Singh, D. G. Schindel, and A. Hatef, Appl. Phys. Lett. 99, 181106 (2011).

    Article  ADS  Google Scholar 

  27. J. D. Cox, M. R. Singh, G. Gumbs, M. A. Anton, and F. Carreno, Phys. Rev. B 86, 125452 (2012).

    Article  ADS  Google Scholar 

  28. Z. Wang, S. Zhen, and B. Yu, Laser Phys. Lett. 12, 046004 (2015).

    Article  ADS  Google Scholar 

  29. M. R. Singh, C. Racknor, and D. Schindel, Appl. Phys. Lett. 101, 051115 (2012).

    Article  ADS  Google Scholar 

  30. L.-G. Wang, H. Chen, and S.-Y. Zhu, Phys. Rev. E 70, 066602 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Asadpour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solookinejad, G., Panahi, M., Sangachin, E.A. et al. Manipulating transmission and reflection properties of a photonic crystal doped with quantum dot nanostructures. J. Exp. Theor. Phys. 123, 957–962 (2016). https://doi.org/10.1134/S1063776116150176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116150176

Navigation