Advertisement

Journal of Experimental and Theoretical Physics

, Volume 123, Issue 6, pp 979–984 | Cite as

Dynamics of anisotropic power-law f(R) cosmology

Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess et al., Astrophys. J. 607, 665 (2004); C. L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003); M. Tegmark et al., Phys. Rev. D 69, 103501 (2004); D. N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980); S. A. Appleby and R. A. Battye, Phys. Lett. B 654, 7 (2007); S. A. Appleby, R. A. Battye, and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 1006, 005 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    S. Nojiri and S. D. Odintsov, Phys. Rev. D 70, 103522 (2004); T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 84, 024020 (2011); S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod. Phys. 115, 4 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012); K. Bamba, S. Nojiri, S. D. Odintsov, and D. Saez-Gomez, Phys. Lett. B 730, 136 (2014); K. Bamba, A. N. Makarenko, A. N. Myagky, S. Nojiri, and S. D. Odintsov, J. Cosmol. Astropart. Phys. 01, 008 (2014); K. Bamba, S. Nojiri, and S. D. Odintsov, Phys. Lett. B 698, 451 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. D. Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010); T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010); T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep. 513, 1 (2012).Google Scholar
  7. 7.
    S. Nojiri and S. D. Odintsov, Problems of Modern Theoretical Physics, A Volume in Honour of Prof. I. L. Buchbinder, in the Occasion of his 60th Birthday (Tomks. Gos. Politekh. Univ., Tomsk, 2008), p. 266, arXiv:0807.0685.Google Scholar
  8. 8.
    A. A. Starobinsky, JETP Lett. 86, 157 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    W. Hu and T. Sawicki, Phys. Rev. D 76, 064004 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    K. Bamba, C. Q. Geng, C. C. Lee, and L. W. Luo, J. Cosmol. Astropart. Phys. 1101, 021 (2011); B. Li, T. P. Sotiriou, and J. D. Barrow, Phys. Rev. D 83, 104017 (2011); M. Jamil, D. Momeni, and R. Myrzakulov, Eur. Phys. J. C 72, 1959 (2012); Eur. Phys. J. C 72, 2075 (2012); Eur. Phys. J. C 72, 2122 (2012), Eur. Phys. J. C 72, 2137 (2012); Eur. Phys. J. C 73, 2267 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    S. Nojiri and S. D. Odintsov, Phys. Lett. B 1, 631 (2005); S. Nojiri, S. D. Odintsov, and O. G. Gorbunova, J. Phys. A 39, 6627 (2006); G. Congnola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 73, 084007 (2006); Phys. Rev. D 75, 086002 (2007).Google Scholar
  12. 12.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge Univ. Press, Cambridge, 1973).CrossRefMATHGoogle Scholar
  13. 13.
    M. Visser, Science 276, 88 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    J. Santos, J. S. Alcaniz, M. J. Reboucas, and F. C. Carvalho, Phys. Rev. D 76, 083513 (2007).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    O. Bertolami and M. C. Sequeira, Phys. Rev. D 79, 104010 (2009).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Balart and E. C. Vagenas, Phys. Lett. B 730, 14 (2014).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    N. M. Garcia, T. Harko, F. S. N. Lobo, and J. P. Mimoso, J. Phys.: Conf. Ser. 314, 012060 (2011).Google Scholar
  18. 18.
    K. Atazadeh and F. Darabi, Gen. Rel. Grav. 46, 1664 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    M. Sharif and M. F. Shamir, Class. Quantum Grav. 26, 235020 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    M. Sharif and M. F. Shamir, Gen. Rel. Grav. 42, 2643 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    M. F. Shamir, Astrophys. Space Sci. 330, 183 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    S. Capozziello, P. Martin-Moruno, and C. Rubano, Phys. Lett. B 664, 12 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    K. Bamba, S. Nojiri, S. D. Odintsov, and D. Saez-Gomez, Phys. Rev. D 90, 124061 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. F. Shamir and Z. Raza, Canad. J. Phys. 93, 37 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Department of Sciences and HumanitiesNational University of Computer and Emerging Sciences, Lahore CampusIslamabadPakistan

Personalised recommendations