Skip to main content
Log in

Computer Simulation of Zr0.8Sc0.2O1.9/Ce0.9Gd0.1O1.95 Heterostructure

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A two-layer Zr0.8Sc0.2O1.9/Ce0.9Gd0.1O1.95 heterostructure has been modeled by the molecular dynamics method in a box containing about 27 thousand atoms. It is shown that this system retains on the whole the crystallographic characteristics of layers doped with zirconia and ceria, having a fluorite structure. Crystal structure distortions are observed in a narrow boundary layer with a thickness of few angstrom. An analysis of pair correlation functions indicates that the oxygen sublattice in the heterostructure is disordered. The calculated values of the layer-by-layer diffusion coefficient of oxygen and the diffusion activation energy are compared with the data of both direct physical and computer experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. P. P. Huijmans, F. P. F. van Berkel, and G. M. Christie, J. Power Sources 71, 107 (1998).

    Article  ADS  Google Scholar 

  2. B. C. H. Steele and A. Heinzel, Nature 414, 345 (2001).

    Article  ADS  Google Scholar 

  3. T. Takeguchi, R. Kikuchi, T. Yano, et al., Catal. Today. 84, 217 (2003).

    Article  Google Scholar 

  4. S. M. Haile, Acta Mater. 51, 5981 (2003).

    Article  Google Scholar 

  5. J. Rossmeisl and W. G. Bessler, Solid State Ionics 178, 1694 (2008).

    Article  Google Scholar 

  6. A. Tarancon, M. Burriel, J. Santiso, et al., J. Mater. Chem. 20, 3799 (2010).

    Article  Google Scholar 

  7. W. C. Chueh, Y. Hao, W. Jung, et al., Nat. Mater. 11, 155 (2012).

    Article  ADS  Google Scholar 

  8. O. A. Marina, C. Bagger, S. Primdahl, et al., Solid State Ionics 123, 199 (1999).

    Article  Google Scholar 

  9. S. Wang, T. Kobayshi, M. Dokiya, et al., J. Electrochem. Soc. 147, 3606 (2000).

    Article  Google Scholar 

  10. J. Faber, C. Geoffroy, A. Roux, et al., Appl. Phys. A 49, 225 (1989).

    Article  ADS  Google Scholar 

  11. S. P. Jiang and J. Li, Solid Oxide Fuel Cells. Materials Properties and Performance, Ed. by J. W. Fergus (CRC Press, Boca Raton, 2009), p. 131.

    Google Scholar 

  12. A. Mai, V. A. C. Haanappel, S. Uhlenbruck, et al., Solid State Ionics 176, 1341 (2005).

    Article  Google Scholar 

  13. S. Sun, R. Hui, and J. Roller, J. Solid State Electrochem. 14, 1125 (2010).

    Article  Google Scholar 

  14. T. Matsui, S. Li, H. Muroyama, et al., Solid State Ionics 300, 135 (2017).

    Article  Google Scholar 

  15. D. Lee, I. Lee, Y. Jeon, et al., Solid State Ionics 176, 1021 (2005).

    Article  Google Scholar 

  16. P. Plonczak, M. Joost, J. Hjelm, et al., J. Power Sources 196, 1156 (2011).

    Article  ADS  Google Scholar 

  17. S. Uhlenbruck, N. Jordan, D. Sebold, et al., Thin Solid Films 515, 4053 (2007).

    Article  ADS  Google Scholar 

  18. M. Shiono, K. Kobayashi, T. L. Nguyen, et al., Solid State Ionics 170, 1 (2004).

    Article  Google Scholar 

  19. T. Somekawa, Y. Matsuzaki, Y. Tachikawa, et al., Solid State Ionics 282, 1 (2015).

    Article  Google Scholar 

  20. F. Wang, M. E. Brito, K. Yamaji, et al., Solid State Ionics 262, 454 (2014).

    Article  Google Scholar 

  21. I. Yu. Gotlib, A. K. Ivanov-Shitz, and I. V. Murin, Proc. All-Russia Conf. with Int. Participation “Chemistry of Solids and Functional Materials-2018,” May 21–27, 2018, St. Petersburg.

  22. A. K. Ivanov-Shitz and G. N. Mazo, Crystallogr. Rep. 63 (1), 1 (2018).

    Article  ADS  Google Scholar 

  23. M. Z. Galin, A. K. Ivanov-Shitz, and G. N. Mazo, Crystallogr. Rep. 63 (1), 104 (2018).

    Article  ADS  Google Scholar 

  24. M. Yashima and T. Takizawa, J. Phys. Chem. C 114, 2385 (2010).

    Article  Google Scholar 

  25. T. I. Politova and J. T. S. Irvine, Solid State Ionics 168, 153 (2004).

    Article  Google Scholar 

  26. S. P. S. Badwal, F. T. Ciacchi, and D. Milosevic, Solid State Ionics 136–137, 91 (2000).

    Article  Google Scholar 

  27. W. Smith, I. T. Todorov, and M. Leslie, Z. Kristallogr. 220, 563 (2005).

    Google Scholar 

  28. Computer Modelling in Inorganic Chemistry, Ed. by C. R. A. Catlow (Academic, London, 1997).

    Google Scholar 

  29. S. L. Chaplot, Phys. Rev. B 42, 2149 (1990).

    Article  ADS  Google Scholar 

  30. S. P. Miller, B. I. Dunlap, and A. S. Fleischer, J. Fuel Cell Sci. Tech. 12, 021003 (2015).

    Google Scholar 

  31. R. Devanathan, S. Thevuthasan, and J. D. Gale, Phys. Chem. Chem. Phys. 11, 5506 (2009).

    Article  Google Scholar 

  32. T. X. T. Sayle, S. C. Parker, and D. C. Sayle, J. Mater. Chem. 16, 1067 (2006).

    Article  Google Scholar 

  33. E. Ruiz-Trejo, J. D. Sirman, Yu. M. Baikov, et al., Solid State Ionics 113–115, 565 (1998).

    Article  Google Scholar 

  34. P. S. Manning, J. D. Sirman, and J. A. Kilner, Solid State Ionics 93, 125 (1997).

    Article  Google Scholar 

  35. A. Tarancón, A. Morata, F. Peiró, et al., Fuel Cells 11, 26 (2011).

    Article  Google Scholar 

  36. C. W. Huang, W. C. J. Wei, C. S. Chen, et al., J. Eur. Ceram. Soc. 31, 3159 (2011).

    Article  Google Scholar 

  37. Z. Q. Yu, R. Devanathan, W. Jiang, et al., Solid State Ionics 181, 367 (2010).

    Article  Google Scholar 

  38. T. Sakai, J. Hyodo, M. Ogushi, et al., Solid State Ionics 301, 156 (2017).

    Article  Google Scholar 

  39. R. Devanathan, S. Thevuthasan, and J. D. Gale, Phys. Chem. Chem. Phys. 11, 5506 (2009).

    Article  Google Scholar 

  40. A. K. Ivanov-Shitz and I. V. Murin, Ionics of Solid State (S.-Peterb. Gos. Univ., St. Petersburg, 2010), Vol. 2 [in Russian].

    Google Scholar 

  41. Y. Li and B. Hafskold, J. Phys.: Condens. Matter 7, 1255 (1995).

    ADS  Google Scholar 

  42. A. Azad, O. A. Marina, C. M. Wang, et al., Appl. Phys. Lett. 86, 131906 (2005).

    Article  ADS  Google Scholar 

  43. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, et al., Science 321, 676 (2008).

    Article  ADS  Google Scholar 

  44. H. Näfe, Ionics 24, 763 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 17-03-00650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ivanov-Schitz.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov-Schitz, A.K., Gotlib, I.Y., Galin, M.Z. et al. Computer Simulation of Zr0.8Sc0.2O1.9/Ce0.9Gd0.1O1.95 Heterostructure. Crystallogr. Rep. 64, 407–412 (2019). https://doi.org/10.1134/S1063774519030118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519030118

Navigation