Skip to main content
Log in

Structural Conditionality of the Ionic Conductivity of MTiORO4 (M = K, Rb; R = P, As) Single Crystals

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The ionic conductivity σ||c along the crystallographic axis c and the structural imperfection of the lattices of KTiOPO4, RbTiOPO4, and RbTiOAsO4 single crystals with low defect concentration, grown by the high temperature solution growth technique, have been investigated by impedance spectroscopy and X-ray diffraction analysis. Isomorphic substitutions of Rb+ ions for conduction K+ cations in MTiOPO4 crystals decreases the σ||c value, whereas the substitution of As5+ ions for framework P5+ cations in RbTiORO4 crystals increases the σ||c value. The σ||c values at 573 K are found to be 1.0 × 10–5, 5.7 × 10–6, 2.0 × 10–6, and 3.3 × 10–5 S/cm for the KTiOPO4, RbTiOPO4 {100}, RbTiOPO4 {201}, and RbTiOAsO4 crystals, respectively (the growth zone of the crystalline boule from which the samples were cut is indicated in braces).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Voronkova and V. K. Yanovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 24 (12), 2062 (1988).

    Google Scholar 

  2. E. L. Belokoneva, Usp. Khim. 63 (7), 559 (1994).

    Article  Google Scholar 

  3. N. I. Sorokina and V. I. Voronkova, Crystallogr. Rep. 52 (1), 80 (2007).

    Article  ADS  Google Scholar 

  4. V. A. Kalesinkas, N. I. Pavlova, I. S. Rez, and I. P. Grigas, Lit. Fiz. Sb. 22, 87 (1982).

    Google Scholar 

  5. V. K. Yanovskii and V. I. Voronkova, Fiz. Tverd. Tela 27 (7), 2183 (1985).

    Google Scholar 

  6. I. M. Sil’vestrova, V. A. Maslov, and Yu. V. Pisarevskii, Kristallografiya 37 (5), 1227 (1992).

    Google Scholar 

  7. A. Pimenov, C. H. Ruscher, and V. A. Maslov, Solid State Commun. 97 (11), 913 (1996).

    Article  ADS  Google Scholar 

  8. J. D. Bierlein and C. B. Arweiler, Appl. Phys. Lett. 49 (15), 917 (1986).

    Article  ADS  Google Scholar 

  9. P. Urenski, N. Gorbatov, and G. Rosenman, J. Appl. Phys. 89 (3), 1850 (2001).

    Article  ADS  Google Scholar 

  10. J. H. Park, C. S. Kim, B. C. Choi, et al., Appl. Phys. A 78, 745 (2004).

    Article  ADS  Google Scholar 

  11. K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, J. Mater. Sci. Lett. 19, 69 (2000).

    Article  Google Scholar 

  12. V. G. Gurtovoi, A. U. Sheleg, S. A. Guretskii, and N. A. Kalanda, Crystallogr. Rep. 53 (4), 683 (2008).

    Article  ADS  Google Scholar 

  13. S. Sigaryov, J. Phys. D: Appl. Phys. 26, 1326 (1993).

    Article  ADS  Google Scholar 

  14. B. C. Choi, J. B. Kim, B. M. Jin, et al., J. Korean Phys. Soc. 25 (4), 327 (1992).

    Google Scholar 

  15. V. A. Rusov, V. A. Serebryakov, A. B. Kaplun, and A. V. Gorchakov, Opt. Zh. 76 (6), 6 (2009).

    Google Scholar 

  16. http://www.ariel.ac.il.

  17. N. Angert, L. Kaplun, M. Tseitlin, et al., J. Cryst. Growth 137, 116 (1994).

    Article  ADS  Google Scholar 

  18. M. Tseitlin, E. Mojaev, and M. Roth, J. Cryst. Growth 310, 1929 (2008).

    Article  ADS  Google Scholar 

  19. Yu. V. Shaldin, S. Matyjasik, M. Tseitlin, et al., Phys. Status Solidi B 246 (2), 452 (2009).

    Article  ADS  Google Scholar 

  20. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Fiz. Tverd. Tela 25, 1748 (1983).

    Google Scholar 

  21. Yu. V. Shaldin, R. Popravskii, S. Matyjasik, et al., Fiz. Tverd. Tela 37 (4), 1160 (1995).

    Google Scholar 

  22. Yu. V. Shaldin, S. Matyjasik, M. Rabadanov, et al., Phys. Solid State 48 (5), 912 (2006).

    Article  ADS  Google Scholar 

  23. N. Angert, M. Tseitlin, E. Yashin, and M. Roth, Appl. Phys. Lett. 67 (13), 1941 (1995).

    Article  ADS  Google Scholar 

  24. I. Tordjman, R. Masse, and C. Guitel, Z. Krist. 139 (2), 103 (1974).

    Article  Google Scholar 

  25. S. Norberg and N. Ishizawa, Acta Crystallogr. C 61, i99 (2005).

    Article  Google Scholar 

  26. N. E. Novikova, I. A. Verin, N. I. Sorokina, et al., Crystallogr. Rep. 53 (6), 942 (2008).

    Article  ADS  Google Scholar 

  27. N. E. Novikova, Candidate’s Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 2012).

    Google Scholar 

  28. E. L. Belokoneva and B. V. Mill’, Zh. Neorg. Khim. 39 (3), 355 (1994).

    Google Scholar 

  29. M. Yashima and T. Komatsu, Chem. Commun., 1070 (2009).

  30. P. Delarue, C. Lecomte, M. Jannin, et al., J. Phys.: Condens. Matter 11, 4123 (1999).

    ADS  Google Scholar 

  31. R. D. Shannon, Acta Crystallogr. A 32 (5), 751 (1976).

    Article  ADS  Google Scholar 

  32. A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics, Vol. 1 (Izd-vo SPbGU, St. Petersburg, 2000) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Original Russian Text © N.I. Sorokin, N.E. Novikova, Yu.V. Shaldin, M. Tseitlin, 2018, published in Kristallografiya, 2018, Vol. 63, No. 2, pp. 225–229.

First Russian Crystallographic Congress

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Novikova, N.E., Shaldin, Y.V. et al. Structural Conditionality of the Ionic Conductivity of MTiORO4 (M = K, Rb; R = P, As) Single Crystals. Crystallogr. Rep. 63, 207–211 (2018). https://doi.org/10.1134/S106377451802027X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377451802027X

Navigation