Advertisement

Crystallography Reports

, Volume 63, Issue 2, pp 178–185 | Cite as

The Influence of Cation Substitution on the Kinetics of Phase Transitions in Crystals of (K,NH4)3H(SO4)2 Solid Solutions

  • E. V. Selezneva
  • I. P. Makarova
  • V. V. Grebenev
  • V. A. Komornikov
Structure of Inorganic Compounds

Abstract

The structure of (K0.967(NH4)0.033)3H(SO4)2 crystals, belonging to the K3H(SO4)2–(NH4)3H(SO4)2–H2O salt system, has been investigated by X-ray structural analysis. The room-temperature characteristics of the atomic structure of these crystals are found to be as follows: sp. gr. C2/c, Z = 4, a = 14.7025(4) Å, b = 5.6859(2) Å, c = 9.7885(3) Å, and R/wR = 0.021/0.030%. The thermal and optical properties of (K,NH4)3H(SO4)2 and K3H(SO4)2 single crystals have been investigated and compared in a temperature range of 295–500 K.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, et al., Crystallogr. Rep. 59 (3), 344 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, et al., Crystallogr. Rep. 59 (6), 878 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, et al., Solid State Ionics 268, 68 (2014).CrossRefGoogle Scholar
  4. 4.
    E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, et al., Crystallogr. Rep. 60 (6), 814 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Baranov, Crystallogr. Rep. 48 (6), 1012 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics, Vol. 2 (Izd-vo SPbGU, St. Petersburg, 2010) [in Russian].Google Scholar
  7. 7.
    A. I. Baranov, V. V. Grebenev, U. Bismaer, and J. Ludwig, Ferroelectrics 369, 108 (2008).CrossRefGoogle Scholar
  8. 8.
    I. P. Makarova, T. S. Chernaya, I. A. Verin, et al., Phys. Solid State 51 (7), 1431 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    I. P. Makarova, T. S. Chernaya, A. A. Filaretov, et al., Crystallogr. Rep. 55 (3), 393 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    S. Suzuki and Y. Makita, Acta Crystallogr. B 34, 732 (1978).CrossRefGoogle Scholar
  11. 11.
    T. Fukami, K. Horiuchi, K. Nakasone, and K. Furukawa, Jpn J. Appl. Phys. 35, 2253 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    Oxford Diffraction. CrysAlisPro (Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK, 2011).Google Scholar
  13. 13.
    V. Petříček, M. Dušek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).Google Scholar
  14. 14.
    P. J. Becker and P. Coppens, Acta Crystallogr. A 30, 129 (1974).ADSCrossRefGoogle Scholar
  15. 15.
    K. Brandenburg and H. Putz, DIAMOND, Version 3 (Crystal Impact GbR, Bonn, Germany, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Selezneva
    • 1
  • I. P. Makarova
    • 1
  • V. V. Grebenev
    • 1
  • V. A. Komornikov
    • 1
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia

Personalised recommendations