Advertisement

Crystallography Reports

, Volume 63, Issue 2, pp 234–240 | Cite as

Manifestation of the Sapphire Crystal Structure in the Surface Nanopattern and Its Application in the Nitride Film Growth

  • A. E. Muslimov
  • A. V. Butashin
  • V. M. Kanevsky
  • A. N. Deryabin
  • E. A. Vovk
  • V. A. Babaev
Surface and Thin Films

Abstract

The “quenching” technique was used to investigate the initial stage of the formation of a terracestep nanostructure on the R-cut surface of sapphire crystal upon high-temperature annealing in air. The morphological features of the formation of A- and R-sapphire planes are experimentally shown in dependence on the misorientation direction and qualitatively interpreted with allowance for the surface energy density for the main sapphire faces. The possibilities of forming AlN layers on the R-sapphire surface with a terrace-step nanostructure under thermochemical effect and high-temperature substrate annealing in a mixture of nitrogen and reducing gases are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Mikhailov, A. V. Butashin, V. M. Kanevskii, et al., Poverkhnost, No. 6, 97 (2011).Google Scholar
  2. 2.
    A. V. Butashin, V. M. Kanevskii, A. E. Muslimov, et al., Crystallogr. Rep. 59 (3), 418 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    J. Kao, S.-J. Jeong, Z. Jiang, et al., Adv. Mater. 26, 2777 (2014).CrossRefGoogle Scholar
  4. 4.
    E. Barrena, J. O. Ossó, F. Schreiber, et al., J. Mater. Res. 19, 2061 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. Ismach, D. Kantorovich, and E. Joselevich, J. Am. Chem. Soc. 127, 11554 (2005).CrossRefGoogle Scholar
  6. 6.
    F. Cuccureddu, V. Usov, S. Murphy, et al., Rev. Sci. Instrum. 79 (5), 053907 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    J. Y. Son, S. J. Lim, J. H. Cho, et al., Appl. Phys. Lett. 93, 053109 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A. E. Muslimov, A. V. Butashin, A. A. Konovko, et al., Crystallogr. Rep. 57 (3), 415 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. E. Muslimov, A. V. Butashin, B. V. Nabatov, et al., Crystallogr. Rep. 62 (2), 300 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Shiratsuchi, M. Yamamoto, and Y. Kamada, Jpn. J. Appl. Phys. 41, 5719 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Butashin, V. P. Vlasov, V. M. Kanevskii, et al., Kristallografiya 57 (5), 927 (2012).Google Scholar
  12. 12.
    K. Maruyama, M. Yoshikawa, and H. Takigawa, J. Cryst. Growth 93, 761 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    S. I. Bakholdin and V. N. Maslov, Phys. Solid State 57 (6), 1236 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. G. Nosov, S. I. Bakholdin, and V. M. Krymov, Tech. Phys. 54 (2), 239 (2009).CrossRefGoogle Scholar
  15. 15.
    S. Curiotto and D. Chatain, Surf. Sci. 603, 2688 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    V. P. Vlasov, A. E. Muslimov, A. V. Butashin, and V. M. Kanevskii, Crystallogr. Rep. 61 (1), 58 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    H. M. Manasevit and W. I. Simpson, J. Appl. Phys. 35, 1349 (1964).ADSCrossRefGoogle Scholar
  18. 18.
    T. Maeda, M. Yoshimoto, T. Ohnishi, et al., J. Cryst. Growth 177, 95 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    M. Y. Chern, Y. C. Huang, and W. L. Xu, Thin Solid Films 515 (20–21), 7866 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    Kh. Sh.-O. Kaltaev, N. S. Sidel’nikova, S. Nizhankovskii, et al., Semiconductors 43 (12), 1606 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    H. Fukuyama, Sh. Kusunoki, A. Hakomori, and K. Hiraga, J. Appl. Phys. 100, 024905 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Butashin, V. M. Kanevskii, A. E. Muslimov, et al., Crystallogr. Rep. 60 (4), 565 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    I. A. Prokhorov, B. G. Zakharov, B. S. Roshchin, et al., Crystallogr. Rep. 56 (3), 456 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    M. Araki, N. Mochimizo, K. Hoshino, and K. Tadatomo, Jpn. J. Appl. Phys. 47 (1), 119 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    D. G. Gromov, S. A. Gavrilov, and E. N. Redichev, Zh. Fiz. Khim. 79 (9), 1578 (2005).Google Scholar
  26. 26.
    D. G. Gromov, S. A. Gavrilov, E. N. Redichev, and R. M. Ammosov, Phys. Solid State 49 (1), 178 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    S. S. Belousov, S. A. Gavrilov, D. G. Gromov, et al., Izv. Vyssh. Uchebn. Zaved., Elektron., No. 1, 15 (2007).Google Scholar
  28. 28.
    L. J. Lewis, P. Jensen, and J.-L. Barrat, Phys. Rev. B 56, 2248 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    R. Kofman, P. Cheyssac, Y. Lereah, and A. Stella, Eur. Phys. J. D 9, 441 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    F. Celestini, R. J.-M. Pellenq, P. Bordarier, and B. Rousseau, Phys. D 37, 9 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    M. A. Korzhuev, Fiz. Khim. Obrab. Mater., No. 5, 153 (1993).Google Scholar
  32. 32.
    V. F. Kiselev, S. N. Kozlov, and A. V. Zoteev, Fundamentals of Solid Surface Physics (Izd-vo MGU, Moscow, 1999) [in Russian].Google Scholar
  33. 33.
    M. V. Klassen-Neklyudova, Kh. S. Bagdasarov, P. M. Belyaev, et al., Ruby and Sapphire (Nauka, Moscow, 1974) [in Russian].Google Scholar
  34. 34.
    M. N. Magomedov, Phys. Solid State 46 (5), 954 (2004).ADSCrossRefGoogle Scholar
  35. 35.
    D. G. Gromov and S. A. Gavrilov, Phys. Solid State 51 (10), 2135 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    S. I. Krivonogov, A. A. Krukhmalev, S. V. Nizhankovskii, et al., Crystallogr. Rep. 60 (1), 138 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. E. Muslimov
    • 1
  • A. V. Butashin
    • 1
  • V. M. Kanevsky
    • 1
  • A. N. Deryabin
    • 1
  • E. A. Vovk
    • 2
  • V. A. Babaev
    • 3
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.Institute for Single CrystalsNational Academy of Sciences of UkraineKharkovUkraine
  3. 3.Dagestan State UniversityMakhachkalaRussia

Personalised recommendations