Skip to main content
Log in

Hydroxyapatite/Anatase Photocatalytic Core–Shell Composite Prepared by Sol‒Gel Processing

  • Nanomaterials and Ceramics
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The conditions for preparing hydroxyapatite/anatase Ca10(PO4)6(OH)2/TiO2 nanocomposites with a core–shell structure by sol‒gel processing have been optimized. The photocatalytic activity of these nanocomposites is close to that of the commercial photocatalysts based on titanium dioxide (precursor Ti(OBut)4 concentration 40 vol %, hydroxyapatite/TiO2 sol ratio 1: 2, annealing temperature 500°C). The photocatalytic activity of hydroxyapatite/TiO2 composites with different anatase contents has been estimated for the first time from the singlet oxygen yield. It is shown that the degree of modification of apatite particle surface affects significantly the structural characteristics of the hydroxyapatite/TiO2 composite. An increase in the relative anatase content reduces the sizes of apatite crystallites and increases their specific surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. A. Lett, M. Sundareswari, and K. Ravichandran, Mater. Today: Proc. 3, 1672 (2016).

    Article  Google Scholar 

  2. P. Tschoppe, D. L. Zandim, P. Martus, and A. M. Kielbassa, J. Dent. 39, 430 (2011).

    Article  Google Scholar 

  3. M. M. Hasani-Sadrabadi, N. Mokarram, M. Azami, et al., Polymer 52, 1286 (2011).

    Article  Google Scholar 

  4. S. Ch. Oh, Y. Wu, D. T. Tran, et al., Fuel 167, 208 (2016).

    Article  Google Scholar 

  5. J. H. Park, G. D. Lee, A. Nishikata, and T. Tsuru, Corros. Sci. 44, 1087 (2002).

    Article  Google Scholar 

  6. I. Mobasherpour, E. Salahi, and M. Pazouki, Desalination 266, 142 (2011).

    Article  Google Scholar 

  7. M. He, H. Shi, X. Zhao, et al., Procedia Environ. Sci. 18, 657 (2013).

    Article  Google Scholar 

  8. T. Giannakopoulou, N. Todorova, G. Romanos, et al., Mater. Sci. Eng. B 177, 1046 (2012).

    Article  Google Scholar 

  9. H. Anmin, L. Tong, L. Ming, et al., Appl. Catal. B 63, 41 (2006).

    Article  Google Scholar 

  10. Yu. M. Artem’ev and V. K. Ryabchuk, Introduction into Heterogeneous Photocatalysis: A Handbook (Izd. SPbGU, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  11. T. L. Thompson and J. T. Yates, Chem. Rev. 106, 4428 (2006).

    Article  Google Scholar 

  12. T. Daimon and Y. Nosaka, J. Phys. Chem. C 111, 4420 (2007).

    Article  Google Scholar 

  13. H. Tang, K. Prasad, R. Sanjines, et al., J. Appl. Phys. 75, 2042 (1994).

    Article  ADS  Google Scholar 

  14. L. V. Zhukova, J. Kiwi, and V. V. Nikandrov, Dokl. Akad. Nauk 435, 1 (2010).

    Google Scholar 

  15. Sh. Ji, S. Murakami, M. Kamitakahara, and K. Ioku, Mater. Res. Bull. 44, 768 (2010).

    Article  Google Scholar 

  16. G. Sheng, L. Qiao, and Y. Mou, J. Environ. Eng. 137, 611 (2011).

    Article  Google Scholar 

  17. A. Mitsionis, T. Vaimakis, C. Trapalis, et al., Appl. Catal. B 106, 398 (2011).

    Article  Google Scholar 

  18. W. Pon-On, N. Charoenphandhu, and I.-M. et. Tang, Mater. Sci. Eng. C 33, 251 (2013).

    Article  Google Scholar 

  19. A. J. Nathanael, J. H. Lee, D. Mangalaraj, et al., Powder Technol. 228, 410 (2012).

    Article  Google Scholar 

  20. Kvang Seong Li et al., Patent No. 247358 (July 27, 2012; conventional priority of June 24, 2008, KR 10-2008-0059536).

  21. A. Sarkar and S. Kannan, Ceram. Int. 40, 6453 (2014).

    Article  Google Scholar 

  22. M. Enayati-Jazi, M. Solati-Hashjin, A. Nemati, and F. Bakhshi, Superlattices Microstruct. 51, 877 (2012).

    Article  ADS  Google Scholar 

  23. Y. Liu, Q. Yang, J. H. Wei, et al., Mater. Chem. Phys. 129, 654 (2011).

    Article  Google Scholar 

  24. Y. Ono, T. Rachi, M. Yokouchi, et al., Mater. Res. Bull. 48, 2272 (2013).

    Article  Google Scholar 

  25. A. Farzin, M. Ahmadian, and M. H. Fathi, Mater. Sci. Eng. C 33, 2251 (2013).

    Article  Google Scholar 

  26. M. Iwasaki, Y. Miyamoto, S. Ito, et al., J. Colloid Interface Sci. 326, 537 (2008).

    Article  ADS  Google Scholar 

  27. X. F. Xiao, R. F. Liu, and Y. Z. Zheng, Surf. Coat. Technol. 200, 4406 (2006).

    Article  Google Scholar 

  28. S. Abbasi, F. Golestani-Fard, H. R. Rezaie, et al., Mater. Res. Bull. 47, 3407 (2012).

    Article  Google Scholar 

  29. A. Kobayashi and W. Jiang, Vacuum 83, 86 (2008).

    Article  ADS  Google Scholar 

  30. X. Zheng, M. Huang, and C. Ding, Biomaterials 21, 841 (2000).

    Article  Google Scholar 

  31. M. Gaona, R. S. Lima, and B. R. Marple, Mater. Sci. Eng. A 458, 141 (2007).

    Article  Google Scholar 

  32. L. Mohan, D. Durgalakshmi, M. Geetha, et al., Ceram. Int. 38, 3435 (2012).

    Article  Google Scholar 

  33. W. Xu, W. Hu, M. Li, and C. Wen, Mater. Lett. 60, 1575 (2006).

    Article  Google Scholar 

  34. E. Milella, F. Cosentino, A. Licciulli, and C. Massaro, Biomaterials 22, 1425 (2001).

    Article  Google Scholar 

  35. H.-W. Kim, Y.-H. Koh, L.-H. Li, et al., Biomaterials 25, 2533 (2004).

    Article  Google Scholar 

  36. C. E. Wen, W. Xu, W. Y. Hu, and P. D. Hodgson, Acta Biomater. 3, 403 (2007).

    Article  Google Scholar 

  37. J. Y. Han, Z. T. Yu, and L. Zhou, Appl. Surf. Sci. 255, 455 (2008).

    Article  ADS  Google Scholar 

  38. K.-H. Im, S.-B. Lee, K.-M. Kim, and Y.-K. Lee, Surf. Coat. Technol. 202, 1135 (2007).

    Article  Google Scholar 

  39. J. Harle, H.-W. Kim, N. Mordan, et al., Acta Biomater. 2, 547 (2006).

    Article  Google Scholar 

  40. A. Balamurugan, G. Balossier, S. Kannan, et al., Mater. Sci. Eng. C 27, 162 (2007).

    Article  Google Scholar 

  41. A. J. Nathanael, N. S. Arul, N. Ponpandian, et al., Thin Solid Films 518, 7333 (2010).

    Article  ADS  Google Scholar 

  42. W. Xu, Hu, Li, et al., Trans. Nonferrous Met. Soc. China 16, 209 (2006).

    Article  Google Scholar 

  43. B. Su, G. Zhang, X. Yu, and C. Wang, J. Univ. Sci. Technol. Beijing 13, 469 (2006).

    Article  Google Scholar 

  44. A. J. Nathanael, Y. M. Im, T. H. Oh, et al., Appl. Surf. Sci. 332, 368 (2015).

    Article  ADS  Google Scholar 

  45. P. A. Ramires, A. Romito, F. Cosentino, and E. Milella, Biomaterials 22, 1467 (2001).

    Article  Google Scholar 

  46. J. Wang, C. Li, X. Luan, et al., J. Mol. Catal. A: Chem. 320, 62 (2010).

    Article  Google Scholar 

  47. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, 1990).

    Google Scholar 

  48. T. V. Khamova, E. S. Kolovangina, S. V. Myakin, et al., Russ. J. Gen. Chem. 83, 1594 (2013).

    Article  Google Scholar 

  49. M. Sychov, Y. Nakanishi, E. Vasina, et al., Chem. Lett. 44, 197 (2015).

    Article  Google Scholar 

  50. N. Petchsang, W. Pon-On, J. H. Hodak, and I. M. Tang, J. Magn. Magn. Mater. 321, 1990 (2009).

    Article  ADS  Google Scholar 

  51. A. Nakajima, K. Takakuwa, Y. Kameshima, et al., J. Photochem. Photobiol. A 177, 94 (2006).

    Article  Google Scholar 

  52. A. J. Nathanael, D. Mangalaraj, P. C. Chen, and N. Ponpandian, Compos. Sci. Technol. 70, 419 (2010).

    Article  Google Scholar 

  53. J. Xie, X. Meng, Z. Zhou, et al., Mater. Lett. 110, 57 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Frank-Kamenetskaya.

Additional information

Original Russian Text © T.V. Khamova, O.V. Frank-Kamenetskaya, O.A. Shilova, V.P. Chelibanov, A.M. Marugin, E.A. Yasenko, M.A. Kuz’mina, A.E. Baranchikov, V.K. Ivanov, 2018, published in Kristallografiya, 2018, Vol. 63, No. 2, pp. 275–282.

First Russian Crystallographic Congress

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamova, T.V., Frank-Kamenetskaya, O.V., Shilova, O.A. et al. Hydroxyapatite/Anatase Photocatalytic Core–Shell Composite Prepared by Sol‒Gel Processing. Crystallogr. Rep. 63, 254–260 (2018). https://doi.org/10.1134/S1063774518020086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518020086

Navigation