Advertisement

Crystallography Reports

, Volume 63, Issue 2, pp 254–260 | Cite as

Hydroxyapatite/Anatase Photocatalytic Core–Shell Composite Prepared by Sol‒Gel Processing

  • T. V. Khamova
  • O. V. Frank-Kamenetskaya
  • O. A. Shilova
  • V. P. Chelibanov
  • A. M. Marugin
  • E. A. Yasenko
  • M. A. Kuz’mina
  • A. E. Baranchikov
  • V. K. Ivanov
Nanomaterials and Ceramics

Abstract

The conditions for preparing hydroxyapatite/anatase Ca10(PO4)6(OH)2/TiO2 nanocomposites with a core–shell structure by sol‒gel processing have been optimized. The photocatalytic activity of these nanocomposites is close to that of the commercial photocatalysts based on titanium dioxide (precursor Ti(OBut)4 concentration 40 vol %, hydroxyapatite/TiO2 sol ratio 1: 2, annealing temperature 500°C). The photocatalytic activity of hydroxyapatite/TiO2 composites with different anatase contents has been estimated for the first time from the singlet oxygen yield. It is shown that the degree of modification of apatite particle surface affects significantly the structural characteristics of the hydroxyapatite/TiO2 composite. An increase in the relative anatase content reduces the sizes of apatite crystallites and increases their specific surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Lett, M. Sundareswari, and K. Ravichandran, Mater. Today: Proc. 3, 1672 (2016).CrossRefGoogle Scholar
  2. 2.
    P. Tschoppe, D. L. Zandim, P. Martus, and A. M. Kielbassa, J. Dent. 39, 430 (2011).CrossRefGoogle Scholar
  3. 3.
    M. M. Hasani-Sadrabadi, N. Mokarram, M. Azami, et al., Polymer 52, 1286 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Ch. Oh, Y. Wu, D. T. Tran, et al., Fuel 167, 208 (2016).CrossRefGoogle Scholar
  5. 5.
    J. H. Park, G. D. Lee, A. Nishikata, and T. Tsuru, Corros. Sci. 44, 1087 (2002).CrossRefGoogle Scholar
  6. 6.
    I. Mobasherpour, E. Salahi, and M. Pazouki, Desalination 266, 142 (2011).CrossRefGoogle Scholar
  7. 7.
    M. He, H. Shi, X. Zhao, et al., Procedia Environ. Sci. 18, 657 (2013).CrossRefGoogle Scholar
  8. 8.
    T. Giannakopoulou, N. Todorova, G. Romanos, et al., Mater. Sci. Eng. B 177, 1046 (2012).CrossRefGoogle Scholar
  9. 9.
    H. Anmin, L. Tong, L. Ming, et al., Appl. Catal. B 63, 41 (2006).CrossRefGoogle Scholar
  10. 10.
    Yu. M. Artem’ev and V. K. Ryabchuk, Introduction into Heterogeneous Photocatalysis: A Handbook (Izd. SPbGU, St. Petersburg, 1999) [in Russian].Google Scholar
  11. 11.
    T. L. Thompson and J. T. Yates, Chem. Rev. 106, 4428 (2006).CrossRefGoogle Scholar
  12. 12.
    T. Daimon and Y. Nosaka, J. Phys. Chem. C 111, 4420 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Tang, K. Prasad, R. Sanjines, et al., J. Appl. Phys. 75, 2042 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    L. V. Zhukova, J. Kiwi, and V. V. Nikandrov, Dokl. Akad. Nauk 435, 1 (2010).Google Scholar
  15. 15.
    Sh. Ji, S. Murakami, M. Kamitakahara, and K. Ioku, Mater. Res. Bull. 44, 768 (2010).CrossRefGoogle Scholar
  16. 16.
    G. Sheng, L. Qiao, and Y. Mou, J. Environ. Eng. 137, 611 (2011).CrossRefGoogle Scholar
  17. 17.
    A. Mitsionis, T. Vaimakis, C. Trapalis, et al., Appl. Catal. B 106, 398 (2011).CrossRefGoogle Scholar
  18. 18.
    W. Pon-On, N. Charoenphandhu, and I.-M. et. Tang, Mater. Sci. Eng. C 33, 251 (2013).CrossRefGoogle Scholar
  19. 19.
    A. J. Nathanael, J. H. Lee, D. Mangalaraj, et al., Powder Technol. 228, 410 (2012).CrossRefGoogle Scholar
  20. 20.
    Kvang Seong Li et al., Patent No. 247358 (July 27, 2012; conventional priority of June 24, 2008, KR 10-2008-0059536).Google Scholar
  21. 21.
    A. Sarkar and S. Kannan, Ceram. Int. 40, 6453 (2014).CrossRefGoogle Scholar
  22. 22.
    M. Enayati-Jazi, M. Solati-Hashjin, A. Nemati, and F. Bakhshi, Superlattices Microstruct. 51, 877 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Liu, Q. Yang, J. H. Wei, et al., Mater. Chem. Phys. 129, 654 (2011).CrossRefGoogle Scholar
  24. 24.
    Y. Ono, T. Rachi, M. Yokouchi, et al., Mater. Res. Bull. 48, 2272 (2013).CrossRefGoogle Scholar
  25. 25.
    A. Farzin, M. Ahmadian, and M. H. Fathi, Mater. Sci. Eng. C 33, 2251 (2013).CrossRefGoogle Scholar
  26. 26.
    M. Iwasaki, Y. Miyamoto, S. Ito, et al., J. Colloid Interface Sci. 326, 537 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    X. F. Xiao, R. F. Liu, and Y. Z. Zheng, Surf. Coat. Technol. 200, 4406 (2006).CrossRefGoogle Scholar
  28. 28.
    S. Abbasi, F. Golestani-Fard, H. R. Rezaie, et al., Mater. Res. Bull. 47, 3407 (2012).CrossRefGoogle Scholar
  29. 29.
    A. Kobayashi and W. Jiang, Vacuum 83, 86 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    X. Zheng, M. Huang, and C. Ding, Biomaterials 21, 841 (2000).CrossRefGoogle Scholar
  31. 31.
    M. Gaona, R. S. Lima, and B. R. Marple, Mater. Sci. Eng. A 458, 141 (2007).CrossRefGoogle Scholar
  32. 32.
    L. Mohan, D. Durgalakshmi, M. Geetha, et al., Ceram. Int. 38, 3435 (2012).CrossRefGoogle Scholar
  33. 33.
    W. Xu, W. Hu, M. Li, and C. Wen, Mater. Lett. 60, 1575 (2006).CrossRefGoogle Scholar
  34. 34.
    E. Milella, F. Cosentino, A. Licciulli, and C. Massaro, Biomaterials 22, 1425 (2001).CrossRefGoogle Scholar
  35. 35.
    H.-W. Kim, Y.-H. Koh, L.-H. Li, et al., Biomaterials 25, 2533 (2004).CrossRefGoogle Scholar
  36. 36.
    C. E. Wen, W. Xu, W. Y. Hu, and P. D. Hodgson, Acta Biomater. 3, 403 (2007).CrossRefGoogle Scholar
  37. 37.
    J. Y. Han, Z. T. Yu, and L. Zhou, Appl. Surf. Sci. 255, 455 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    K.-H. Im, S.-B. Lee, K.-M. Kim, and Y.-K. Lee, Surf. Coat. Technol. 202, 1135 (2007).CrossRefGoogle Scholar
  39. 39.
    J. Harle, H.-W. Kim, N. Mordan, et al., Acta Biomater. 2, 547 (2006).CrossRefGoogle Scholar
  40. 40.
    A. Balamurugan, G. Balossier, S. Kannan, et al., Mater. Sci. Eng. C 27, 162 (2007).CrossRefGoogle Scholar
  41. 41.
    A. J. Nathanael, N. S. Arul, N. Ponpandian, et al., Thin Solid Films 518, 7333 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    W. Xu, Hu, Li, et al., Trans. Nonferrous Met. Soc. China 16, 209 (2006).CrossRefGoogle Scholar
  43. 43.
    B. Su, G. Zhang, X. Yu, and C. Wang, J. Univ. Sci. Technol. Beijing 13, 469 (2006).CrossRefGoogle Scholar
  44. 44.
    A. J. Nathanael, Y. M. Im, T. H. Oh, et al., Appl. Surf. Sci. 332, 368 (2015).ADSCrossRefGoogle Scholar
  45. 45.
    P. A. Ramires, A. Romito, F. Cosentino, and E. Milella, Biomaterials 22, 1467 (2001).CrossRefGoogle Scholar
  46. 46.
    J. Wang, C. Li, X. Luan, et al., J. Mol. Catal. A: Chem. 320, 62 (2010).CrossRefGoogle Scholar
  47. 47.
    C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, 1990).Google Scholar
  48. 48.
    T. V. Khamova, E. S. Kolovangina, S. V. Myakin, et al., Russ. J. Gen. Chem. 83, 1594 (2013).CrossRefGoogle Scholar
  49. 49.
    M. Sychov, Y. Nakanishi, E. Vasina, et al., Chem. Lett. 44, 197 (2015).CrossRefGoogle Scholar
  50. 50.
    N. Petchsang, W. Pon-On, J. H. Hodak, and I. M. Tang, J. Magn. Magn. Mater. 321, 1990 (2009).ADSCrossRefGoogle Scholar
  51. 51.
    A. Nakajima, K. Takakuwa, Y. Kameshima, et al., J. Photochem. Photobiol. A 177, 94 (2006).CrossRefGoogle Scholar
  52. 52.
    A. J. Nathanael, D. Mangalaraj, P. C. Chen, and N. Ponpandian, Compos. Sci. Technol. 70, 419 (2010).CrossRefGoogle Scholar
  53. 53.
    J. Xie, X. Meng, Z. Zhou, et al., Mater. Lett. 110, 57 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. V. Khamova
    • 1
  • O. V. Frank-Kamenetskaya
    • 1
    • 2
  • O. A. Shilova
    • 1
    • 3
  • V. P. Chelibanov
    • 4
  • A. M. Marugin
    • 4
  • E. A. Yasenko
    • 4
  • M. A. Kuz’mina
    • 2
  • A. E. Baranchikov
    • 5
  • V. K. Ivanov
    • 5
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  4. 4.AO “OPTEC,”St. PetersburgRussia
  5. 5.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations