Skip to main content
Log in

Simulation of a Hydrodynamic Stellar Wind from a Rapidly Rotating Star

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The mechanism for the formation of disk-like flows from rapidly rotating Be stars is not yet clear. An axisymmetric hydrodynamic stellar wind flow from a rapidly rotating star has been simulated numerically as a step in solving this problem. The change in the shape of the star as it rotates and the turbulence excited in the stellar wind at Reynolds numbers ∼109−1013 are taken into account. Calculations show the formation of a disk-like flow from the stellar surface at the equator, which expands into the polar regions due to a pressure gradient on scales of the order of the stellar radius. A poloidal velocity vortex is formed at high latitudes. No turbulence is excited near the equator within the simplest standard models and, therefore, no quasi-Keplerian disk-like flow emerges in the equatorial plane. A dependence of the total mass flux on the stellar rotation rate at various surface temperatures has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abdo, M. Ackermann, M. Ajello, A. Allafort, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, et al., Astrophys. J. 736, L11 (2011).

    Article  ADS  Google Scholar 

  2. F. Aharonian, A. G. Akhperjanian, K.-M. Aye, A. R. Bazer-Bachi, M. Beilicke, W. Benbow, D. Berge, P. Berghaus, et al., Astron. Astrophys. 442, 1 (2005).

    Article  ADS  Google Scholar 

  3. F. Aharonian, A. G. Akhperjanian, G. Anton, U. Barres de Almeida, A. R. Bazer-Bachi, Y. Becherini, B. Behera, K. Bernlöhr, et al., Astron. Astrophys. 507, 389 (2009).

    Article  ADS  Google Scholar 

  4. T. J. Barth and D. C. Jesperson, AIAA J. 13, 0366 (1989).

    Google Scholar 

  5. V. S. Beskin and Y. N. Pidoprygora, Astron. Rep., 42, 71 (1998).

    ADS  Google Scholar 

  6. J. E. Bjorkman and J. P. Cassinelli, Astrophys. J. 409, 429 (1993).

    Article  ADS  Google Scholar 

  7. S. V. Bogovalov, Astron. Astrophys. 323, 634 (1997).

    ADS  Google Scholar 

  8. S. V. Bogovalov and S. M. Romanikhin, Int. J. Mod. Phys. D 27, 1844004–336 (2018).

    Article  ADS  Google Scholar 

  9. A. C. Carciofi, IAU Symp. 272, 325 (2001).

    ADS  Google Scholar 

  10. A. C. Carciofi and J. E. Bjorkman, Astrophys. J. 684, 1374 (2008).

    Article  ADS  Google Scholar 

  11. A. C. Carciofi, A. Domiciano de Souza, A. M. Magalhes, J. E. Bjorkman, and F. Vakili, Astrophys. J. 676, L41 (2008).

    Article  ADS  Google Scholar 

  12. M. Chernyakova, A. A. Abdo, A. Neronov, M. V. McSwain, J. Moldón, M. Ribó, J. M. Paredes, I. Sushch, et al., Mon. Not. R. Astron. Soc. 439, 432 (2014).

    Article  ADS  Google Scholar 

  13. X. Haubois, B. C. Mota, A. C. Carciofi, Z. H. Draper, J. P. Wisniewski, D. Bednarski, and Th. Rivinius, Astrophys. J. 785, 12 (2014).

    Article  ADS  Google Scholar 

  14. S. Johnston, R. N. Manchester, D. McConnell, and D. Campbell-Wilson, Mon. Not. R. Astron. Soc. 302, 277 (1999).

    Article  ADS  Google Scholar 

  15. S. Johnston, L. Ball, N. Wang, and R. N. Manchester, Mon. Not. R. Astron. Soc. 358, 1069 (2005).

    Article  ADS  Google Scholar 

  16. R. Keppens and J. P. Goedbloed, Astron. Astrophys. 343, 251 (1999).

    ADS  Google Scholar 

  17. R. Kippenhahn, A. Weigert, and A. Weiss, Stellar Structure and Evolution (Springer, Berlin, Heidelberg, 2012).

    Book  MATH  Google Scholar 

  18. J. G. Kirk, L. Ball, and O. Skjæraasen, Astropart. Phys. 10, 31 (1999).

    Article  ADS  Google Scholar 

  19. H. J. G. L. M. Lamers and J. P. Cassinelli, Introduction to Stellar Winds (Cambridge Univ. Press, UK, 1999).

    Book  Google Scholar 

  20. B. E. Launder and D. B. Spalding, Comput. Meth. Appl. Mech. Eng. 3, 269 (1973).

    Article  Google Scholar 

  21. U. Lee, Publ. Astron. Soc. Jpn. 65, 122 (2013).

    Article  ADS  Google Scholar 

  22. U. Lee, Y. Osaki, and H. Saio, Mon. Not. R. Astron. Soc. 250, 432 (1991).

    Article  ADS  Google Scholar 

  23. A. Melatos, S. Johnston, and D. B. Melrose, Mon. Not. R. Astron. Soc. 275, 381 (1995).

    Article  ADS  Google Scholar 

  24. C. Neiner, S. Mathis, H. Saio, and U. Lee, Astron. Soc. Pacif. Conf. Ser. 479, 319 (2013).

    ADS  Google Scholar 

  25. A. T. Okazaki and I. Negueruela, Astron. Astrophys. 377, 161 (2001).

    Article  ADS  Google Scholar 

  26. S. Owocki, Astron. Soc. Pacif. Conf. Ser. 355, 219 (2006).

    ADS  Google Scholar 

  27. S. P. Owocki, S. R. Cranmer, and J. M. Blondin, Astrophys. J. 424, 887 (1994).

    Article  ADS  Google Scholar 

  28. D. M. Peterson, C. A. Hummel, T. A. Pauls, J. T. Armstrong, J. A. Benson, G. C. Gilbreath, R. B. Hindsley, D. J. Hutter, et al., Astrophys. J. 636, 1087 (2006).

    Article  ADS  Google Scholar 

  29. J. M. Porter, Astron. Astrophys. 348, 512 (1999).

    ADS  Google Scholar 

  30. J. M. Porter and T. Rivinius, Publ. Astron. Soc. Pacif. 115, 1153 (2003).

    Article  ADS  Google Scholar 

  31. T. Rivinius, A. C. Carciofi, and C. Martayan, Astron. Astrophys. Rev. 21, 69 (2013).

    Article  ADS  Google Scholar 

  32. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  33. Y. Touhami, Am. Astron. Soc. Meet. Abstracts 219, 404.02 (2012).

    ADS  Google Scholar 

  34. R. G. Vieira, A. C. Carciofi, and J. E. Bjorkman, Astron. Soc. Pacif. Conf. Ser. 506, 135 (2016).

    ADS  Google Scholar 

  35. R. G. Vieira, A. C. Carciofi, J. E. Bjorkman, Th. Rivinius, D. Baade, and L. R. Rimulo, 464, 3071 (2017).

  36. G. A. Wade, V. Petit, J. H. Grunhut, C. Neiner, and MiMeS Collab., Astron. Soc. Pacif. Conf. Ser. 506, 207 (2016).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bogovalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogovalov, S.V., Romanikhin, S.M. & Tronin, I.V. Simulation of a Hydrodynamic Stellar Wind from a Rapidly Rotating Star. Astron. Lett. 45, 81–91 (2019). https://doi.org/10.1134/S1063773719020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773719020026

Keywords

Navigation