Skip to main content
Log in

Measuring the Probabilistic Photometric Redshifts of X-ray Quasars Based on the Quantile Regression of Ensembles of Decision Trees

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present empirical machine learning algorithms for measuring the probabilistic photometric redshifts (photo-z) of X-ray quasars based on the quantile regression of ensembles of decision trees. Relying on the data of present-day photometric sky surveys (e.g., SDSS, GALEX, WISE, UKIDSS, 2MASS, FIRST), the proposed methods allow one to make high-quality photo-z point predictions for extragalactic objects, to estimate the confidence intervals, and to reconstruct the full probability distribution functions for all predictions. The quality of photo-z predictions has been tested on samples of X-ray quasars from the 1RASS and 3XMM DR7 surveys, which have spectroscopic redshift measurements in the SDSS DR14Q catalog. The proposed approaches have shown the following accuracy (the metrics are the normalized median absolute deviation σNMAD and the percentage of outliers n>0.15): σNMAD, n>0.15 = 0.043, 12% (SDSS + WISE), 0.037, 8% (SDSS + WISE + GALEX) and 0.032, 8.6% (SDSS + WISE + GALEX + UKIDSS) on the RASS sample; σNMAD, n>0.15 = 0.054, 13% (SDSS + WISE), 0.045, 7.6% (SDSS + WISE + GALEX), and 0.037, 6.6% (SDSS + WISE + GALEX + UKIDSS) on the 3XMM sample. The presented photo-z algorithms will become an important tool for analyzing the multi-wavelength data on X-ray quasars in the forthcoming Spectrum–Roentgen–Gamma sky survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. C. Abbott, F. B. Abdalla, A. Alarcon, J. Aleksić, S. Allam, et al. (DES Collab.), arXiv:1708.01530 (2017).

    Google Scholar 

  2. T. M. C. Abbott, F. B. Abdalla, S. Allam, A. Amara, J. Annis, et al., arXiv:1801.03181 (2018).

    Google Scholar 

  3. F. B. Abdalla, M. Banerji, O. Lahav, and V. Rashkov, Mon. Not. R. Astron. Soc. 417, 1891 (2011).

    Article  ADS  Google Scholar 

  4. P. A. Abell, J. Allison, S. F. Anderson, J. R. Andrew, et al. (LSST Sci. Collab.), arXiv:0912.0201 (2009).

    Google Scholar 

  5. B. Abolfathi, D. S. Aguado, G. Aguilar, C. Allende Prieto, et al., Astrophys. J. Suppl. Ser. 235, 42 (2018).

    Article  ADS  Google Scholar 

  6. T. T. Ananna, M. Salvato, S. LaMassa, C. M. Urry, N. Cappelluti, et al., Astrophys. J. 850, 66 (2017).

    Article  ADS  Google Scholar 

  7. M. de Backer, A. El Ghouch, and I. van Keilegom, J. Am. Stat. Assoc., 1 (2018).

    Google Scholar 

  8. R. Beck, L. Dobos, T. Budavári, A. S. Szalay, and I. Csabai, Mon. Not. R. Astron. Soc. 460, 1371 (2016).

    Article  ADS  Google Scholar 

  9. R. Beck, C.-A. Lin, E. E. O. Ishida, F. Gieseke, R. S. de Souza, M. V. Costa-Duarte, M. W. Hattab, and A. Krone-Martins, Mon. Not. R. Astron. Soc. 468, 4323 (2017).

    Article  ADS  Google Scholar 

  10. R. H. Becker, R. L. White, and D. J. Helfand, Astrophys. J. 450, 559 (1996).

    Article  ADS  Google Scholar 

  11. Th. Boller, M. J. Freyberg, J. Tremper, F. Haberl, W. Voges, and K. Nandra, Astron. Astrophys. 588, 103 (2016).

    Article  ADS  Google Scholar 

  12. Jo Bovy, A. D. Myers, J. F. Hennawi, D. W. Hogg, R. G. McMahon, et al., Astrophys. J. 749, 41 (2012).

    Article  ADS  Google Scholar 

  13. L. Breiman, Machine Learning 24, 123 (1996).

    Google Scholar 

  14. L. Breiman, Ann. Stat. 26, 801 (1998).

    Article  Google Scholar 

  15. L. Breiman, Machine Learning 45, 5 (2001).

    Article  Google Scholar 

  16. L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees (Wadsworth, Belmont, CA, 1984).

    MATH  Google Scholar 

  17. M. Brescia, S. Cavuoti, R. D’Abrusco, G. Longo, and A. Mercurio, Astrophys. J. 772, 140 (2013).

    Article  ADS  Google Scholar 

  18. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al. (Gaia Collab.), arXiv:1804.09365 (2018).

    Google Scholar 

  19. G. Bruzual and S. Charlot, Mon. Not. R. Astron. Soc. 344, 1000 (2003).

    Article  ADS  Google Scholar 

  20. M. Carrasco Kind and R. J. Brunner, Mon. Not. R. Astron. Soc. 432, 1483 (2013).

    Article  ADS  Google Scholar 

  21. R. Caruana and A. Niculescu-Mizil, in Proceedings of the 23rd International Conference on Machine Learning (2006), pp. 161–168.

    Google Scholar 

  22. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, et al., arXiv:1612.05560 (2016).

    Google Scholar 

  23. P. Chaudhuri and W. Loh, Bernoulli 8, 561 (2002).

    MathSciNet  Google Scholar 

  24. T. Chen and C. Guestrin, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, p. 785.

    Book  Google Scholar 

  25. A. V. Dorogush, A. Gulin, G. Gusev, N. Kazeev, L. Ostroumova Prokhorenkova, and A. Vorobev, arXiv:1706.09516 (2017).

    Google Scholar 

  26. D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, et al., Astrophys. J. 633, 560 (2005).

    Article  ADS  Google Scholar 

  27. M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, J. Machine Learning Res. 15, 3133 (2014).

    MathSciNet  Google Scholar 

  28. Yo. Freund and R. E. Schapire, J. Comput. Syst. Sci. 55, 119 (1997).

    Article  Google Scholar 

  29. J. Friedman, Comput. Stat. Data Anal. 38, 367 (1999).

    Article  Google Scholar 

  30. J. Friedman, Ann. Stat. 29(5), (2001).

    Google Scholar 

  31. P. Geurts, D. Ernst, and L. Wehenkel, Machine Learning 63, 3 (2006).

    Article  Google Scholar 

  32. T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman, Mon.Weather Rev. 133, 1098 (2004).

    Article  ADS  Google Scholar 

  33. T. Gneiting, F. Balabdaoui, and A. E. Raftery, Stat. Methodol., Ser. B 69, 243 (2007).

    Article  Google Scholar 

  34. T. Hastie, R. Tibshirani, and J. Friedman, Elements of Statistical Learning, 2nd ed. (Springer, New York, 2009).

    Book  MATH  Google Scholar 

  35. T. Ho, Pattern Anal. Machine Intell. 20(8), 832 (1998a).

    Google Scholar 

  36. T. K. Ho, IEEE Trans. Pattern Anal. Machine Intell. 20, 832 (1998b).

    Google Scholar 

  37. D.W. Hogg, arXiv:astro-ph/9905116 (1999).

    Google Scholar 

  38. G. Hutsi, M. Gilfanov, A. Kolodzig, and R. Sunyaev, Astron. Astrophys. 572, 28 (2014).

    Article  ADS  Google Scholar 

  39. R. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications (Springer, Berlin, 2013).

    Book  MATH  Google Scholar 

  40. J. T. A. de Jong, G. A. Verdoes Kleijn, T. Erben, H. Hildebrandt, K. Kuijken, et al., Astron. Astrophys. 604, 134 (2017).

    Article  Google Scholar 

  41. G.Ke, Q. Meng, T. Finely, T. Wang,W.Chen, W.Ma, Q. Ye, and T.-Y. Liu, Adv. Neural Inform. Proc. Syst. 30, 3149 (2017).

    Google Scholar 

  42. R. Koenker and G. Bassett, Jr., Econometrica 46, 33 (1978).

    Article  Google Scholar 

  43. R. Koenker et al., Quantile Regression (2005).

    Book  MATH  Google Scholar 

  44. R. Kohavi, Proc. IJCAI 14, 1137 (1995).

    Google Scholar 

  45. A. Kolodzig, M. Gilfanov, R. Sunyaev, S. Sazonov, and M. Brusa, Astron. Astrophys. 558, 89 (2013).

    Article  ADS  Google Scholar 

  46. A. Lawrence, S. J. Warren, O. Almaini, A. C. Edge, N. C. Hambly, R. F. Jameson, P. Lucas, M. Casali, et al., Mon. Not. R. Astron. Soc. 379, 1599 (2007).

    Article  ADS  Google Scholar 

  47. Q. V. Le, T. Sears, and A. Smola, Technical report (NICTA, Sydney, 2005).

    Google Scholar 

  48. B. Leistedt and D. W. Hogg, Astrophys. J. 838, 1 (2017).

    Article  Google Scholar 

  49. Yu. Liu and V. Gopalakrishnan, Data 2, 8 (2017).

    Article  Google Scholar 

  50. M. Markatou, H. Tian, S. Biswas, and G. Hripcsak, J. Machine Learning Res. 6, 1127 (2005).

    MathSciNet  Google Scholar 

  51. D. Ch. Martin, J. Fanson, D. Schiminovich, P. Morrissey, P. G. Friedman, et al., Astrophys. J. 619, 1 (1996).

    Article  Google Scholar 

  52. N. Meinshausen, J. Machine Learning Res. 7, 983 (2006).

    MathSciNet  Google Scholar 

  53. A. Merloni, P. Predehl, W. Becker, H. Bohringer, T. Boller, H. Brunner, et al., arXiv:1209.3114 (2012).

    Google Scholar 

  54. J. Mitchell and K. F. Wallis, J. Appl. Econometr. 26, 1023 (2012).

    Article  Google Scholar 

  55. X. Morice-Atkinson, B. Hoyle, and D. Bacon, arXiv:1712.03970 (2017).

    Google Scholar 

  56. G. Mountrichas, A. Corral, V. A. Masoura, I. Georgantopoulos, A. Ruiz, A. Georgakakis, F. J. Carrera, and S. Fotopoulou, Astron. Astrophys. 608, 39 (2017).

    Article  ADS  Google Scholar 

  57. K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Boston,MA, 2012).

    MATH  Google Scholar 

  58. I. ˆParis, P. Petitjean, E. Aubourg, A. D. Myers, A. Streblyanska, B.W. Lyke, et al., arXiv:1712.05029 (2017).

    Google Scholar 

  59. A. Patej and D. J. Eisenstein, Mon. Not. R. Astron. Soc. 477, 5090 (2018).

    Article  ADS  Google Scholar 

  60. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, B.O. Grisel, M. Blondel, et al., J.Machine Learning Res. 12, 2825 (2011).

    Google Scholar 

  61. P. J. E. Peebles, Nat. Astron. 1, 57 (2017).

    Article  ADS  Google Scholar 

  62. K. L. Polsterer, A. D’Isanto, and F. Gieseke, arXiv:1608.08016 (2016).

    Google Scholar 

  63. A. Refregier, A. Amara, T. D. Kitching, A. Rassat, R. Scaramella, and J. Weller, arXiv:1001.0061 (2010).

    Google Scholar 

  64. S. R. Rosen, N. A. Webb, M. G. Watson, J. Ballet, D. Barret, V. Braito, F. J. Carrera, et al., Astron. Astrophys. 590, 1 (2016).

    Article  Google Scholar 

  65. M. Salvato, O. Ilbert, and B. Hoyle, Nat. Astron., 68 (2018).

    Google Scholar 

  66. S. J. Schmidt, J. A. Newman, A. Abate, et al., arXiv:1410.4506 (2014).

    Google Scholar 

  67. D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New York, Chichester, 1992).

    Book  MATH  Google Scholar 

  68. M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M. Carpenter, et al., Astron. J. 131, 1163 (2006).

    Article  ADS  Google Scholar 

  69. S. A. Smee, J. E. Gunn, A. Uomoto, N. Roe, and D. Schlegel, Astron. J. 146, 32 (2013).

    Article  ADS  Google Scholar 

  70. A. A. Tsyplakov, Prikl. Ekonom. 3, 27 (2012).

    Google Scholar 

  71. W. Voges, B. Aschenbach, Th. Boller, H. Brouninger, U. Briel, W. Burkert, et al., Astron. Astrophys. 349, 389 (1999).

    ADS  Google Scholar 

  72. W. Voges, B. Aschenbach, T. Boller, H. Brauninger, U. Briel, W. Burkert, et al., IAU Circ. 7432, 3 (2000).

    ADS  Google Scholar 

  73. D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, Ch. Hirata, A.G. Riess, and E. Rozo, Phys. Rep. 530, 87 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  74. D. Wittman, R. Bhaskar, and R. Tobin, Mon. Not. R. Astron. Soc. 457, 4 (2016).

    Article  Google Scholar 

  75. Ch.Wolf, Ch. A. Onken, L. C. Luvaul, B. P. Schmidt, et al., Publ. Astron. Soc. Austral. 35, 10 (2018).

    ADS  Google Scholar 

  76. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  77. Q. Yang, X.-B. Wu, X. Fan, L. Jiang, I. McGreer, et al., Astron. J. 154, 269 (2017).

    Article  ADS  Google Scholar 

  78. M. Zamo and P. Naveau, Math. Geosci. 50, 209 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meshcheryakov.

Additional information

Original Russian Text © A.V. Meshcheryakov, V.V. Glazkova, S.V. Gerasimov, I.V. Mashechkin, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 12, pp. 801–820.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshcheryakov, A.V., Glazkova, V.V., Gerasimov, S.V. et al. Measuring the Probabilistic Photometric Redshifts of X-ray Quasars Based on the Quantile Regression of Ensembles of Decision Trees. Astron. Lett. 44, 735–753 (2018). https://doi.org/10.1134/S1063773718120058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718120058

Keywords

Navigation