Skip to main content
Log in

Determining the Absolute Magnitudes of Galactic-Bulge Red Clump Giants in the Z and Y Filters of the Vista Sky Surveys and the IRAC Filters of the Spitzer Sky Surveys

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = −0.20 ± 0.04, M Y = −0.470 ± 0.045, M[3.6] = −1.70 ± 0.03, M[4.5] = −1.60 ± 0.03, M[5.8] = −1.67 ± 0.03, and M[8.0] = −1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [M/H] ≃ 0.40 (Z ≃ 0.038) with an error of [M/H] ≃ 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9–10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of ~8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200–8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Alonso-Garcia, D.Minniti,M. Catelan, R. Ramos, O. Gonzalez, M. Hempel, P. Lukas, R. Saito, et al., arXiv:1710.04854v1 (2017).

    Google Scholar 

  2. D. R. Alves, Astrophys J. 539, 732 (2000).

    Article  ADS  Google Scholar 

  3. T.-L. Astraatmadja and C. A. L. Bailer-Jones, Astrophys. J. 833, 119 (2016).

    Article  ADS  Google Scholar 

  4. T. Bensby, J. C. Yee, S. Feltzing, J. A. Johnson, A. Gould, J. G. Cohen, M. Asplund, J. Melendez, et al., Astron. Astrophys. 549, 147 (2013).

    Article  Google Scholar 

  5. A. Bhardwaj, M. Rejkuba, D. Minniti, F. Surot, E. Valenti, M. Zoccali, O. A. Gonzalez, M. Romaniello, et al., Astron. Astrophys. 605, id.A100 (2017).

  6. P. A. Boldin, S. S. Tsygankov, and A. A. Lutovinov, Astron. Lett. 39, 375 (2013).

    Article  ADS  Google Scholar 

  7. A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. dal Cero, S. Rubele, and A. Nanni, Mon. Not. R. Astron. Soc. 427, 127 (2012). http://stev.oapd.inaf.it/cmd.

    Article  ADS  Google Scholar 

  8. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  9. M. Cohen, Wm. A. Wheaton, and S. T. Megeath, Astrophys J. 126, 1090 (2003).

    ADS  Google Scholar 

  10. C. M. Dutra, B. X. Santiago, E. L. D. Bica, and B. Barbuy, Mon. Not. R. Astron. Soc. 338, 253 (2003).

    Article  ADS  Google Scholar 

  11. O. Gerhard and I. Martinez-Valpuesta, Astrophys. J. Lett. 744, L8 (2012).

    Article  ADS  Google Scholar 

  12. L. Girardi, Mon. Not. R. Astron. Soc. 308, 818 (1999).

    Article  ADS  Google Scholar 

  13. L. Girardi, Ann. Rev. Astron. Astrophys. 54, 95 (2016).

    Article  ADS  Google Scholar 

  14. G. A. Gontcharov, Astron. Lett. 43, 545 (2017).

    Article  ADS  Google Scholar 

  15. G. A. Gontcharov, Astron. Lett. 34, 785 (2008).

    Article  ADS  Google Scholar 

  16. G. A. Gontcharov, Astron. Lett. 38, 12 (2012).

    Article  ADS  Google Scholar 

  17. G. A. Gontcharov and A. T. Baykova, Astron. Lett. 39, 689 (2013).

    Article  ADS  Google Scholar 

  18. O. A. Gonzalez, M. Rejkuba, M. Zoccali, E. Valenti, D. Minniti, M. Schultheis, R. Tobar, and B. Chen, Astron. Astrophys. 552, 9 (2012).

    Google Scholar 

  19. O. A. Gonzalez, M. Zoccali, S. Vasquez, V. Hill, M. Rejkuba, and E. Valenti, Astron. Astrophys. 584, A46 (2015).

    Article  Google Scholar 

  20. D. I. Karasev, A. A. Lutovinov, and R. A. Burenin, Mon. Not. R. Astron. Soc. Lett. 409, L69 (2010a).

    Article  ADS  Google Scholar 

  21. D. I. Karasev, M. G. Revnivtsev, A. A. Lutovinov, and R. A. Burenin, Astron. Lett. 36, 788 (2010b).

    Article  ADS  Google Scholar 

  22. D. I. Karasev, S. S. Tsygankov, and A. A. Lutovinov, Astron. Lett. 41, 394 (2015).

    Article  ADS  Google Scholar 

  23. C. D. Laney, M. D. Joner, and G. Pietrzynski, Mon. Not. R. Astron. Soc. 419, 1637 (2012).

    Article  ADS  Google Scholar 

  24. P. Marigo, L. Girardi, A. Bressan, Ph. Rosenfield, B. Aringer, Yang Chen, M. Dussin, A. Nanni, et al., Astrophys J. 835, 77 (2017).

    Article  ADS  Google Scholar 

  25. D. M. Nataf, A. Gould, P. Fouqué, O. A. Gonzalez, J. A. Johnson, J. Skowron, A. Udalski, M. K. Szymanski, et al., Astrophys J. 769, 88 (2013).

    Article  ADS  Google Scholar 

  26. D. M. Nataf, O. A. Gonzalez, L. Casagrande, G. Zasowski, C. Wegg, C. Wolf, A. Kunder, J. Alonso-Garcia, et al., Mon. Not. R. Astron. Soc. 456, 2692 (2016).

    Article  ADS  Google Scholar 

  27. S. Nishiyama, M. Tamura, H. Hatano, D. Kato, T. Tanabe, K. Sugitani, and T. Nagata, Astrophys J. 696, 1407 (2009).

    Article  ADS  Google Scholar 

  28. B. Paczynski and K. Stanek, Astron. Astrophys. 494, 219 (1998).

    Google Scholar 

  29. P. Popowski, Astrophys J. 528, 9 (2000).

    Article  ADS  Google Scholar 

  30. M. Revnivtsev, M. van den Berg, R. Burenin, J. E. Grindlay, D. Karasev, and W. Forman, Astron. Astrophys. 515, A49 (2010).

    Article  Google Scholar 

  31. T. Sumi, Mon. Not. R. Astron. Soc. 349, 193 (2004).

    Article  ADS  Google Scholar 

  32. A. Udalski, Astrophys. J. 590, 284 (2003).

    Article  ADS  Google Scholar 

  33. E. Vanhollebeke, M. A. T. Groenewegen, and L. Girardi, Astron. Astrophys. 498, 95 (2009).

    Article  ADS  Google Scholar 

  34. M.Zoccali, A. Renzini, S. Ortolani, L. Greggio, I. Saviane, S. Cassisi, M. Rejkuba, B. Barbuy, R. M. Rich, and E. Bica, Astron. Astrophys. 399, 931 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Karasev.

Additional information

Original Russian Text © D.I. Karasev, A.A. Lutovinov, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 4, pp. 248–264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, D.I., Lutovinov, A.A. Determining the Absolute Magnitudes of Galactic-Bulge Red Clump Giants in the Z and Y Filters of the Vista Sky Surveys and the IRAC Filters of the Spitzer Sky Surveys. Astron. Lett. 44, 220–235 (2018). https://doi.org/10.1134/S1063773718040047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718040047

Keywords

Navigation