Astronomy Letters

, Volume 44, Issue 4, pp 236–247 | Cite as

Kinematics of Stars from the TGAS (Gaia DR1) Catalogue

  • V. V. Vityazev
  • A. V. Popov
  • A. S. Tsvetkov
  • S. D. Petrov
  • D. A. Trofimov
  • V. I. Kiyaev
Article

Abstract

Based on the stellar proper motions of the TGAS (Gaia DR1) catalogue, we have analyzed the velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc. We have obtained four variants of kinematic parameters corresponding to different methods of calculating the distances from the parallaxes of stars measured with large relative errors. We have established that within the Ogorodnikov–Milne model changing the variant of distances affects significantly only the solar velocity components relative to the chosen centroid of stars, provided that the solution is obtained in narrow ranges of distances (0.1 kpc). The estimates of all the remaining kinematic parameters change little. This allows the Oort coefficients and related Galactic rotation parameters as well as all the remaining Ogorodnikov–Milne model parameters (except for the solar terms) to be reliably estimated irrespective of the parallax measurement accuracy. The main results obtained from main-sequence stars in the range of distances from 0.1 to 1.5 kpc are: A = 16.29 ± 0.06 km s−1 kpc−1, B = −11.90 ± 0.05 km s−1 kpc−1, C = −2.99 ± 0.06 km s−1 kpc−1, K = −4.04 ± 0.16 km s−1 kpc−1, and the Galactic rotation period P = 217.41 ± 0.60 Myr. The analogous results obtained from red giants in the range from 0.2 to 1.6 kpc are: the Oort constants A = 13.32 ± 0.09 km s−1 kpc−1, B = −12.71 ± 0.06 km s−1 kpc−1, C = −2.04 ± 0.08 km s−1 kpc−1, K = −2.72 ± 0.19 km s−1 kpc−1, and the Galactic rotation period P = 236.03 ± 0.98 Myr. The Galactic rotation velocity gradient along the radius vector (the slope of the Galactic rotation curve) is −4.32 ± 0.08 km s−1 kpc−1 for main-sequence stars and −0.61 ± 0.11 km s−1 kpc−1 for red giants. This suggests that the Galactic rotation velocity determined from main-sequence stars decreases with increasing distance from the Galactic center faster than it does for red giants.

Keywords

proper motions Gaia DR1 TGAS Galactic kinematics. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Arenou, ASP Conf. Ser. 167, 13 (1999).ADSGoogle Scholar
  2. 2.
    T. L. Astraatmadja and C. A. L. Bailer-Jones, Astrophys. J. 832, 137 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    T. L. Astraatmadja and C. A. L. Bailer-Jones, Astrophys. J. 833, 119 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    C. A. L. Bailer-Jones, Publ. Astron. Soc. Pacif. 127, 994 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Bobylev, Astron. Lett. 36, 634 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    V. V. Bobylev, Astron. Lett. 39, 819 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Bobylev, Astron. Lett. 43, 152 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Bobylev and A. T. Bajkova, Astron. Lett. 42, 90 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Bobylev and A. T. Bajkova, Astron. Lett. 43, 159 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Bobylev, A. S. Stepanishchev, A. T. Bajkova, and G. A. Gontcharov, Astron. Lett. 35, 836 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    Jo Bovy, Mon. Not. R. Astron. Soc. Lett. 468, L63 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    T. E. Corbin, S. E. Urban, and W. H. Warren, Jr., Astrographic Catalogue of Reference Stars ACRS (Naval Observatory USNO, Washington, U.S., 1991).Google Scholar
  13. 13.
    W. Dehnen and J. J. Binney, Mon. Not. R. Astron. Soc. 298, 387 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    G. A. Gontcharov, Astron. Lett. 37, 707 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Henden, S. Levine, J. Terrell, and D. L. Welch, in Proc. of the 225th Meeting of Am. Astron. Society, Jan. 4–8, 2015, Seattle, WA (2015), id.336.16.Google Scholar
  16. 16.
    The Hipparcos and Tycho Catalogues. Astrometric and Photometric Star Catalogues Derived from the ESA HIPPARCOS Space Astrometry Mission, Vol. 1200 of ESA Special Publication (ESA, 1997).Google Scholar
  17. 17.
    E. Høg, C. Fabricius, V. V. Makarov, S. Urban, T. Corbin, G. Wycoff, U. Bastian, P. Schwekendrick, and A. Wicenec, Astron. J. 355, L27 (2000).Google Scholar
  18. 18.
    M. Honma, T. Nagayama, K. Ando, T. Bushimata, Y. K. Choi, T. Handa, T. Hirota, H. Imai, T. Jike, et al., Publ. Astron. Soc. Jpn. 64, 136 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    L. Lindegren, U. Lammers, U. Bastian, J. Hernandez, S. Klioner, D. Hobbs, A. Bombrun, D. Michalik, et al., Astron. Astrophys. 595, 4L (2016).ADSCrossRefGoogle Scholar
  20. 20.
    M. Lopez-Correidora et al., Astron. Astrophys. 572, 101 (2014).CrossRefGoogle Scholar
  21. 21.
    T. E. Lutz and D.H. Kelker, Publ. Astron. Soc.Pacif. 85, 573 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    D. Mihalas and J. Binney, Galactic Astronomy (Freeman, San Francisco, 1981).Google Scholar
  23. 23.
    M. Miyamoto and Zi Zhu, Astron. J. 115, 1483 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    M. Miyamoto, M. Soma, and M. Yoshizawa, Astron. J. 105, 2138 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    B. A. duMont, Astron. Astrophys. 61, 127 (1977).ADSGoogle Scholar
  26. 26.
    K. F. Ogorodnikov, Dynamics of Stellar Systems (Fizmatgiz, Moscow, 1965) [in Russian].MATHGoogle Scholar
  27. 27.
    R. P. Olling and W. Dehnen, Astrophys. J. 599, 275 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Popov, V. V. Vityazev, and A. S. Tsvetkov, Vestn. SPb Univ., Ser. 1, No. 4 (2006).Google Scholar
  29. 29.
    A. S. Rastorguev, N. D. Utkin, M. V. Zabolotskikh, A. K. Dambis, A. T. Bajkova, and V. V. Bobylev, Astrophys. Bull. 72, 122 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, T. M. Dame, Y. Xu, Y. Wu, B. Zhang, et al., Astrophys. J. 783, 130 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    H. Smith, Jr. and H. Eichhorn, Mon. Not. R. Astron. Soc. 281, 211 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    J. Torra, D. Fernandez, and F. Figueras, Astron. Astrophys. 359, 82 (2000).ADSGoogle Scholar
  33. 33.
    S. E. Urban, T. E. Corbin, G. L. Wycot, J. C. Martin, E. S. Jackson, M. I. Zacharias, and D. M. Hall, Astron. J. 115, 1212 (1998).ADSCrossRefGoogle Scholar
  34. 34.
    J. P. Vallee, Astrophys. Space Sci. 364, 79 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    V. V. Vityazev and A. S. Tsvetkov, Astron. Lett. 35, 100 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    C. O. Wright, M. P. Egan, K. E. Kraemer, and S. D. Price, Astron. J. 125, 359 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    Zi Zhu, Publ. Astron. Soc. Jpn. 52, 1133 (2000); Astron. J. 145, 44 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Vityazev
    • 1
  • A. V. Popov
    • 1
  • A. S. Tsvetkov
    • 1
  • S. D. Petrov
    • 1
  • D. A. Trofimov
    • 1
  • V. I. Kiyaev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations