Skip to main content
Log in

Gravitational collapse of a rotating iron stellar core and physical properties of the accompanying neutrino emission

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have ascertained an important role of rotation effects in a collapsing stellar core using a quasi-one-dimensional hydrodynamic model with a rigorous allowance for the neutrino energy losses including the neutrino opacity stage. However, the neutrino scattering processes are not considered in the neutrino emission kinetics as secondary compared to the absorption processes. The quasi-one-dimensional approximation (with averaging of the expression for the centrifugal force over the polar angle) allows numerical calculations to be performed relatively easily up to the formation of a hydrostatically equilibrium neutron star after a very long stage of collapsar cooling by neutrino emission (about 2 s). We present detailed results of our numerical solution, including the neutrino spectra, with electron neutrinos making a dominant contribution to them and the contribution from electron antineutrinos being smaller by an order of magnitude. In the model under consideration, we solve the equation of matter neutronization kinetics by taking into account the main process of nuclear reactions on free nucleons, although the contribution from iron and helium nuclei is included in the equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Aksenov and V. S. Imshennik, Pis’ma Astron. Zh. 20, 32 (1994) [Astron. Lett. 20, 24 (1994)].

    ADS  Google Scholar 

  2. G. S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970) [Sov. Astron. 14, 652 (1970)].

    ADS  Google Scholar 

  3. G. S. Bisnovatyi-Kogan, S. G. Moiseenko, and N. V. Ardeljan, astro-ph/0511173, v. 2 (Nov. 10, 2005).

  4. V. L. Dadykin and O. G. Ryazhskaya, Pis’ma Astron. Zh. 34, 643 (2008) [Astron. Lett. 34, 581 (2008)].

    Google Scholar 

  5. D. A. Frank-Kamenetskii, Physical Processes Inside Stars (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  6. C. L. Fryer and A. Heger, Astrophys. J. 541, 1033 (2000).

    Article  ADS  Google Scholar 

  7. V. S. Imshennik, Pis’ma Astron. Zh. 18, 489 (1992) [Sov. Astron. Lett. 18, 194 (1992)].

    ADS  Google Scholar 

  8. V. S. Imshennik and D. K. Nadyozhin, Preprint IPM, No. 18 (1971).

  9. V. S. Imshennik and D. K. Nadyozhin, Zh. Eksp. Teor. Fiz. 63, 1548 (1972) [Sov. Phys. JETP 36, 821 (1972)].

    ADS  Google Scholar 

  10. V. S. Imshennik and D. K. Nadyozhin, Pis’ma Astron. Zh. 3, 353 (1977) [Sov. Astron. Lett. 3, 188 (1977)].

    ADS  Google Scholar 

  11. V. S. Imshennik and D. K. Nadyozhin, Itogi Nauki Tekhn., Ser. Astron. 21, 63 (1982).

    Google Scholar 

  12. V. S. Imshennik and D. K. Nadyozhin, Usp. Fiz. Nauk 156, 576 (1988).

    Google Scholar 

  13. V. S. Imshennik and D. K. Nadyozhin, Pis’ma Astron. Zh. 18, 195 (1992) [Sov. Astron. Lett. 18, 79 (1992)].

    ADS  Google Scholar 

  14. V. S. Imshennik and O. G. Ryazhskaya, Pis’ma Astron. Zh. 30, 17 (2004) [Astron. Lett. 30, 14 (2004)].

    Google Scholar 

  15. V. S. Imshennik and E. A. Zabrodina, Pis’ma Astron. Zh. 25, 123 (1999) [Astron. Lett. 25, 93 (1999)].

    Google Scholar 

  16. L. N. Ivanova, V. S. Imshennik, and D. K. Nadyozhin, Nauchn. Inform. Astron. Soveta AN SSSR 13, 3 (1969).

    ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  18. R. Mönchmeyer and E. Müller, Timing Neutron Stars, Ed. by H. Ögelman and E. P. J. Heuvel, NATO ASI Ser. C (ASI, New York, 1989), Vol. 262, p. 549.

    Google Scholar 

  19. D. K. Nadyozhin, Astrophys. Space Sci. 53, 131 (1978).

    Article  ADS  Google Scholar 

  20. D. K. Nadyozhin and V. S. Imshennik, Intern. J. Mod. Phys. A 20, 6597 (2005).

    Article  ADS  Google Scholar 

  21. D. K. Nadyozhin and T. L. Razinkova, Nauchn. Inform. Astron. Soveta AN SSSR 61, 29 (1986).

    ADS  Google Scholar 

  22. D. K. Nadyozhin and A. V. Yudin, Pis’ma Astron. Zh. 34, 222 (2008) [Astron. Lett. 34, 198 (2008)].

    Google Scholar 

  23. O. G. Ryazhskaya, Usp. Fiz. Nauk 176, 1039 (2006) [Phys. Usp. 49, 1017 (2006)].

    Article  Google Scholar 

  24. J. L. Tassoul, Theory of Rotating Stars (Princeton Univ., Princeton, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Molokanov.

Additional information

Original Russian Text © V.S. Imshennik, V.O. Molokanov, 2009, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2009, Vol. 35, No. 12, pp. 883–899.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imshennik, V.S., Molokanov, V.O. Gravitational collapse of a rotating iron stellar core and physical properties of the accompanying neutrino emission. Astron. Lett. 35, 799–815 (2009). https://doi.org/10.1134/S1063773709120019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773709120019

Key words

Navigation