Skip to main content
Log in

Galactic Constraints on Fermionic Dark Matter

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In order to explain Galactic structures, a self-gravitating system composed of massive fermions in spherical symmetry is considered. The finite mass distribution of such a component is obtained after solving the Einstein equation for a thermal and semi-degenerate fermionic gas, described by a perfect fluid in hydrostatic equilibrium and exposed to cutoff effects (e.g. evaporation). Within this more general approach a family of density profiles arises, which explains dark matter halo constraints of the Galaxy and provides at the same time an alternative to the central black hole scenario in Sgr A*. This analysis narrows the allowed particle mass to mc2 = 48−345 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bertone and D. Hooper, arXiv: 1605.04909 (2016).

    Google Scholar 

  2. S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42, 407 (1979).

    Article  ADS  Google Scholar 

  3. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Univ. of Chicago, Chicago, 1939).

    MATH  Google Scholar 

  4. S. Chandrasekhar, Principles of Stellar Dynamics (Univ. Chicago Press, Chicago, 1942).

    MATH  Google Scholar 

  5. R. W. Michie, Mon. Not. R. Astron. Soc. 125, 127 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  6. I. R. King, Astron. J. 71, 64 (1966).

    Article  ADS  Google Scholar 

  7. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967).

    Article  ADS  Google Scholar 

  8. R. Ruffini and L. Stella, Astron. Astrophys. 119, 35 (1983).

    ADS  Google Scholar 

  9. M. Merafina and R. Ruffini, Astron. Astrophys. 221, 4 (1989).

    ADS  Google Scholar 

  10. J. G. Gao, M. Merafina, and R. Ruffini, Astron. Astrophys. 235, 1 (1990).

    ADS  Google Scholar 

  11. G. Ingrosso, M. Merafina, R. Ruffini, and F. Strafella, Astron. Astrophys. 258, 223 (1992).

    ADS  Google Scholar 

  12. P.-H. Chavanis, Phys. A (Amsterdam,Neth.) 332, 89 (2004); arXiv: cond-mat/0304073.

    Article  ADS  Google Scholar 

  13. N. Bilic, F. Munyaneza, G. B. Tupper, and R. D. Viollier, Prog. Part. Nucl. Phys. 48, 291 (2002).

    Article  ADS  Google Scholar 

  14. S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075 (2009); arXiv: 0810.4674.

    Article  ADS  Google Scholar 

  15. S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott, and R. Genzel, Astrophys. J. Lett. 707, L114 (2009); arXiv: 0910.3069.

    Google Scholar 

  16. R. Ruffini, C. R. Argüelles, and J. A. Rueda, Mon. Not. R. Astron. Soc. 451, 622 (2015); arXiv: 1409.7365.

    Article  ADS  Google Scholar 

  17. I. Siutsou, C. R. Argüelles, and R. Ruffini, Astron. Rep. 59, 656 (2015); arXiv: 1402.0695.

    Article  ADS  Google Scholar 

  18. C. R. Argüelles and R. Ruffini, Int. J. Mod. Phys. D 23, 1442020 (2014); arXiv: 1405.7505.

    Article  ADS  Google Scholar 

  19. C. R. Argüelles, R. Ruffini, I. Siutsou, and B. Fraga, J. Korean Phys. Soc. 65, 801 (2014); arXiv: 1402.0700.

    Article  ADS  Google Scholar 

  20. C. R. Argüelles, N. E. Mavromatos, J. A. Rueda, and R. Ruffini, J. Cosm. Astropart. Phys. 4, 038 (2016); arXiv: 1502.00136.

    Article  ADS  Google Scholar 

  21. P.-H. Chavanis, M. Lemou, and F. Mêhats, Phys.Rev. D 92, 123527 (2015); arXiv: 1409.7840.

    Article  ADS  Google Scholar 

  22. P.-H. Chavanis, Phys. Rev. E 65, 056123 (2002); cond-mat/0109294.

    Article  ADS  Google Scholar 

  23. P.-H. Chavanis, Phys. A (Amsterdam, Neth.) 365, 102 (2006); cond-mat/0509726.

    Article  ADS  Google Scholar 

  24. C. R. Argüelles, A. Krut, J. A. Rueda, and R. Ruffini, Phys. Dark Universe 21, 82 (2018).

    Article  ADS  Google Scholar 

  25. Y. Sofue, Publ. Astron. Soc. Jpn. 65, 118 (2013); 1307.8241.

    Article  ADS  Google Scholar 

  26. S. L. J. Gibbons, V. Belokurov, and N. W. Evans, Mon. Not. R. Astron. Soc. 445, 3788 (2014); arXiv: 1406.2243.

    Article  ADS  Google Scholar 

  27. D. Tsiklauri and R. D. Viollier, Astrophys. J. 500, 591 (1998); astro-ph/9805273.

    Article  ADS  Google Scholar 

  28. F. De Paolis, G. Ingrosso, A. A. Nucita, D. Orlando, S. Capozziello, and G. Iovane, Astron. Astrophys. 376, 853 (2001); astro-ph/0107497.

    Article  ADS  Google Scholar 

  29. F. Iocco, M. Pato, and G. Bertone, Nat. Phys. 11, 245 (2015); arXiv: 1502.03821.

    Article  Google Scholar 

  30. V. Belokurov, S. E. Koposov, N. W. Evans, J. Pen˜ arrubia, M. J. Irwin, M. C. Smith, G. F. Lewis, M. Gieles, M. I. Wilkinson, G. Gilmore, et al., Mon. Not. R. Astron. Soc. 437, 116 (2014); arXiv: 1301.7069.

    Article  ADS  Google Scholar 

  31. D. Lynden-Bell and R. M. Lynden-Bell, Mon. Not. R. Astron. Soc. 275, 429 (1995).

    Article  ADS  Google Scholar 

  32. C. R. Argüelles, R. Ruffini, and B.M.O. Fraga, J.Korean Phys. Soc. 65, 809 (2014); arXiv: 1402.1329.

    Article  ADS  Google Scholar 

  33. M. Portail, O. Gerhard, C. Wegg, and M. Ness, Mon. Not. R. Astron. Soc. 465, 1621 (2017); arXiv: 1608.07954.

    Article  ADS  Google Scholar 

  34. L.G. Gómez, C. R. Argüelles, V. Perlick, J. A. Rueda, and R. Ruffini, Phys. Rev.D94, 123004 (2016); arXiv: 1610.03442.

    Google Scholar 

  35. A. Lobanov, Nat. Astron. 1, 0069 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krut.

Additional information

The article is published in the original.

Paper presented at the Third Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus on April 23–27, 2018. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krut, A., Arguëlles, C.R., Rueda, J. et al. Galactic Constraints on Fermionic Dark Matter. Astron. Rep. 62, 898–904 (2018). https://doi.org/10.1134/S1063772918120247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918120247

Navigation