Skip to main content
Log in

The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP < 10 eV) in the lower solar corona could be associated with the typology of the largescale magnetic field is presented. Solar observations show an enhancement in the abundances of elements with low FIPs compared to elements with high FIPs (>10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar–stellar analogies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-F. Donati and J. D. Landstreet, Ann. Rev. Astron. Astrophys. 47, 333 (2009).

    Article  ADS  Google Scholar 

  2. A.A. Vidotto, S. G. Gregory, M. Jardine, J. F. Donati, et al., Mon. Not. R. Astron. Soc. 441, 2361 (2014).

    Article  ADS  Google Scholar 

  3. V. See, M. Jardine, A. A. Vidotto, J.-F. Donati, et al., Mon. Not. R. Astron. Soc. 462, 4442 (2016).

    Article  ADS  Google Scholar 

  4. R.W. Noyes, N.O. Weiss, and A. H. Vaughan, Astrophys. J. 287, 769 (1984).

    Article  ADS  Google Scholar 

  5. J.-F. Donati, M. M. Jardine, P. Petit, J. Morin, et al., Astron. Soc. Pacif. Conf. Ser. 384, 156 (2008).

    ADS  Google Scholar 

  6. L. Fletcher, P. J. Cargill, S. K. Antiochos, and B. V. Gudiksen, Space Sci. Rev. 188, 211 (2015).

    Article  ADS  Google Scholar 

  7. S. R. Pottasch, Mon. Not. R. Astron. Soc. 125, 543 (1963).

    Article  ADS  Google Scholar 

  8. J. M. Laming, Living Rev. Solar Phys. 12, 2 (2015).

    Article  ADS  Google Scholar 

  9. K. G. Widing and U. Feldman, Astrophys. J. 555, 426 (2001).

    Article  ADS  Google Scholar 

  10. V. Tomozov, Soln.-Zemn. Fiz. 23, 23 (2013).

    Google Scholar 

  11. K. H. Schatten, J. M. Wilcox, and N. F. Ness, Solar Phys. 6, 442 (1969).

    Article  ADS  Google Scholar 

  12. B. E. Wood, J. M. Laming, and M. Karovska, Astrophys. J. 753, 76 (2012).

    Article  ADS  Google Scholar 

  13. D. Brooks, D. Baker, L. van Driel-Gesztelyi, and H. Warren, Nat. Commun. 8, 183 (2017).

    Article  ADS  Google Scholar 

  14. A. Buergi and J. Geiss, Solar Phys. 103, 347 (1986).

    Article  ADS  Google Scholar 

  15. J. Geiss, G. Gloeckler, and R. von Steiger, Space Sci. Rev. 72, 49 (1995).

    Article  ADS  Google Scholar 

  16. R. von Steiger, J. Geiss, G. Gloeckler, and A. B. Galvin, Space Sci. Rev. 72, 71 (1995).

    Article  ADS  Google Scholar 

  17. T. L. Duvall, Jr., P. H. Scherrer, L. Svalgaard, and J. M. Wilcox, Solar Phys. 61, 233 (1979).

    Article  ADS  Google Scholar 

  18. J. T. Hoeksema, Space Sci. Rev. 72, 137 (1995).

    Article  ADS  Google Scholar 

  19. E. S. Vernova, M. I. Tyasto, and D. G. Baranov, Solar Phys. 289, 2845 (2014).

    Article  ADS  Google Scholar 

  20. J. M. Laming, J. J. Drake, and K. G. Widing, Astrophys. J. 443, 416 (1995).

    Article  ADS  Google Scholar 

  21. N. A. Schwadron, L. A. Fisk, and T. H. Zurbuchen, Astrophys. J. 521, 859 (1999).

    Article  ADS  Google Scholar 

  22. J.M. Laming, Astrophys. J. 614, 1063 (2004).

    Article  ADS  Google Scholar 

  23. M. J. Aschwanden, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd ed. (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

  24. S. V. Shestov, V. M. Nakariakov, A. S. Ulyanov, A. A. Reva, and S. V. Kuzin, Astrophys. J. 840, 64 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pipin.

Additional information

Original Russian Text © V.V. Pipin, V.M. Tomozov, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 4, pp. 299–306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pipin, V.V., Tomozov, V.M. The Nature of Variations in Anomalies of the Chemical Composition of the Solar Corona with the 11-Year Cycle. Astron. Rep. 62, 281–287 (2018). https://doi.org/10.1134/S1063772918040054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918040054

Navigation