Skip to main content
Log in

Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. 20, 254 (1934).

    Article  ADS  Google Scholar 

  2. W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. 20, 259 (1934).

    Article  ADS  Google Scholar 

  3. H. Bethe and R. Peierls, Nature 133, 532 (1934).

    Article  ADS  Google Scholar 

  4. G. Gamow and M. Schoenberg, Phys. Rev. 59, 539 (1941).

    Article  ADS  Google Scholar 

  5. D. K. Nadezhin and V. M. Chechetkin, Sov. Astron. 13, 213 (1969).

    ADS  Google Scholar 

  6. H.-T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012); arXiv: 1206.2503.

    Article  ADS  Google Scholar 

  7. S. J. Smartt, Ann. Rev. Astron. Astrophys. 47, 63 (2009); arXiv: 0908.0700.

    Article  ADS  Google Scholar 

  8. A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hüdepohl, and S. Chakraborty, Nuovo Cimento Riv. Ser. 39, 1 (2016); arXiv: 1508.00785.

    ADS  Google Scholar 

  9. W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).

    Article  ADS  Google Scholar 

  10. V. S. Imshennik and D. K. Nadezhin, Usp. Fiz. Nauk 156, 561 (1988).

    Article  Google Scholar 

  11. H. A. Bethe, Rev.Mod. Phys. 62, 801 (1990).

    Article  ADS  Google Scholar 

  12. H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); arXiv: astro-ph/0612072.

    Article  ADS  Google Scholar 

  13. S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  14. D. Arnett, Canad. J. Phys. 45, 1621 (1967).

    Article  ADS  Google Scholar 

  15. V. S. Imshennik and D. K. Nadezhin, Sov. Phys. JETP 36, 821 (1972).

    ADS  Google Scholar 

  16. D. K. Nadezhin, Astrophys. Space Sci. 49, 399 (1977).

    Article  ADS  Google Scholar 

  17. Neutron Stars 1: Equation of State and Structure, Ed. by P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Astrophys. Space Sci. Lib. 326, 1 (2007).

  18. S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).

    Article  ADS  Google Scholar 

  19. M. L. Alme and J. R. Wilson, Astrophys. J. 186, 1015 (1973).

    Article  ADS  Google Scholar 

  20. L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. 673, L43 (2008); arXiv: 0710.5789.

    Article  ADS  Google Scholar 

  21. F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).

    Article  ADS  Google Scholar 

  22. B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010); arXiv: 1001.4841.

    Article  ADS  Google Scholar 

  23. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 637 (1993).

    Article  ADS  Google Scholar 

  24. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 669 (1993).

    Article  ADS  Google Scholar 

  25. A. Mezzacappa and S.W. Bruenn, Astrophys. J. 410, 740 (1993).

    Article  ADS  Google Scholar 

  26. A. Mezzacappa, M. Liebendörfer, O. E. Messer, W.R. Hix, F.-K. Thielemann, and S.W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001); arXiv: astro-ph/0005366.

    Article  ADS  Google Scholar 

  27. E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, Astrophys. J. 747, 73 (2012); arXiv: 1112.3595.

    Article  ADS  Google Scholar 

  28. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994); arXiv: astro-ph/9404024.

    Article  ADS  Google Scholar 

  29. A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); arXiv: astro-ph/9506061.

    Article  ADS  Google Scholar 

  30. J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011); arXiv: 1106.5496.

    Article  ADS  Google Scholar 

  31. J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015); arXiv: 1403.6115.

    Article  ADS  Google Scholar 

  32. S. M. Couch and C. D. Ott, Astrophys. J. 778, L7 (2013); arXiv: 1309.2632.

    Article  ADS  Google Scholar 

  33. A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, id. A48 (2015); arXiv: 1409.5431.

  34. S. M. Couch and C. D. Ott, Astrophys. J. 799, id. 5 (2015); arXiv: 1408.1399.

  35. D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv: 1510.05022.

    Article  ADS  Google Scholar 

  36. V.M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).

    ADS  Google Scholar 

  37. V. M. Suslin, S. D. Ustyugov, V. M. Chechetkin, and G. P. Churkina, Astron. Rep. 45, 241 (2001).

    Article  ADS  Google Scholar 

  38. V. M. Suslin, M. Yu. Khlopov, V. M. Chechetkin, and V. A. Chuyanov, Astron. Rep. 40, 358 (1996).

    ADS  Google Scholar 

  39. I. V. Baikov, V. M. Suslin, V.M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).

    Article  ADS  Google Scholar 

  40. A. Burrows, Astrophys. J. 318, L57 (1987).

    Article  ADS  Google Scholar 

  41. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  42. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  43. E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheika, JETP Lett. 45, 589 (1987).

    ADS  Google Scholar 

  44. R. Schaeffer, Y. Declais, and S. Jullian, Nature 330, 142 (1987).

    Article  ADS  Google Scholar 

  45. M. V. Popov, A. A. Filina, A. A. Baranov, P. Chardonnet, and V. M. Chechetkin, Astrophys. J. 783, 43 (2014).

    Article  ADS  Google Scholar 

  46. J. I. Castor, Astrophys. J. 178, 779 (1972).

    Article  ADS  Google Scholar 

  47. D. L. Tubbs and D. N. Schramm, Astrophys. J. 201, 467 (1975).

    Article  ADS  Google Scholar 

  48. A. G. Aksenov, Astron. Lett. 24, 482 (1998).

    ADS  Google Scholar 

  49. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).

    Article  ADS  Google Scholar 

  50. G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory: With Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).

    Book  MATH  Google Scholar 

  51. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, Phys. Rev. D 79, 043008 (2009); arXiv: 0901.4837.

    Article  ADS  Google Scholar 

  52. A. G. Aksenov and V. M. Chechetkin, Yad. Fiz. 81 (1) (2018, in press).

    Google Scholar 

  53. I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).

    Article  ADS  Google Scholar 

  54. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).

    Article  ADS  Google Scholar 

  55. S.W. Bruenn, Phys. Rev. Lett. 59, 938 (1987).

    Article  ADS  Google Scholar 

  56. P. Ledoux, Astrophys. J. 105, 305 (1947).

    Article  ADS  MathSciNet  Google Scholar 

  57. G. S. Bisnovatyi-Kogan, Physical Problems in the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  58. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).

    Article  ADS  Google Scholar 

  59. K. Kotake, S. Yamada, and K. Sato, Astrophys. J. 595, 304 (2003).

    Article  ADS  Google Scholar 

  60. A. G. Aksenov, Comput.Math. Math. Phys. 55, 1752 (2015).

    Article  MathSciNet  Google Scholar 

  61. A. G. Aksenov, V. F. Tishkin, and V. M. Chechetkin, Mat. Model., in press.

  62. A. G. Aksenov, Astron. Lett. 25, 185 (1999).

    ADS  Google Scholar 

  63. G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997.

    Article  ADS  Google Scholar 

  64. S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).

    Article  ADS  Google Scholar 

  65. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence. New Approaches (Nauka, Moscow, 2002; Cambridge Int. Science, Boston, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aksenov.

Additional information

Original Russian Text © A.G. Aksenov, V.M. Chechetkin, 2018, published in Astronomicheskii Zhurnal, 2018, Vol. 95, No. 4, pp. 267–279.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, A.G., Chechetkin, V.M. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova. Astron. Rep. 62, 251–263 (2018). https://doi.org/10.1134/S1063772918040017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918040017

Navigation