Advertisement

Astronomy Reports

, Volume 61, Issue 3, pp 193–205 | Cite as

Determining basic characteristics of stars from evolutionary computations

Article

Abstract

A technique for determining a star’s radius from its atmospheric characteristics (effective temperature, surface gravity, and metallicity) is realized based on modernmodel computations of the stellar internal structure and evolution. The atmospheric characteristics can also be used to find the mass and luminosity of the star. The star’s rate of evolution and the initial mass function are taken into account when determining the stellar characteristics, increasing the correctness of the results. Computations of stellar evolution of with and without the stellar rotation taken into account make it possible to remove ambiguity due to missing data on the star’s rotational velocity. The results are checked and uncertainties estimated using stars occupying two heavily populated regions in the Hertzsprung–Russell diagram that have been well studied using various methods: the main sequence and red giant branch. Good agreement with the observations is achieved; there are almost no systematic deviations of the derived point estimates of the fundamental characteristics. The metallicities of the individual components of eclipsing variable stars are estimated using observational data on for such stars displaying lines of both components in their spectra. These metallicities were determined as a function of the stellar masses in a way that eliminates systematic deviations in the derived fundamental characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Torres, J. Andersen, and A. Giménez, Astron. Astrophys. Rev. 18, 67 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    D. E. Blackwell, A. D. Petford, and M. J. Shallis, Astron. Astrophys. 82, 249 (1980).ADSGoogle Scholar
  3. 3.
    D. E. Blackwell, A. D. Petford, S. Arribas, D. J. Haddock, and M. J. Selby, Astron. Astrophys. 232, 396 (1990).ADSGoogle Scholar
  4. 4.
    A. Richichi and I. Percheron, Astron. Astrophys. 386, 492 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    M. E. Sachkov, A. S. Rastorguev, N. N. Samus’, and N. A. Gorynya, Astron. Lett. 24, 377 (1998).ADSGoogle Scholar
  6. 6.
    M. E. Sachkov, Astron. Lett. 28, 589 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    E. N. Kanev, Astron. Nachr. 334, 896 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    S. Ekström, C. Georgy, P. Eggenberger, G. Meynet, N. Mowlavi, A. Wyttenbach, A. Granada, T. Decressin, R. Hirschi, U. Frischknecht, et al., Astron. Astrophys. 537, A146 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    T. Sitnova, G. Zhao, L. Mashonkina, Y. Chen, F. Liu, Y. Pakhomov, K. Tan, M. Bolte, S. Alexeeva, F. Grupp, et al., Astrophys. J. 808, 148 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    A.-L. Luo, Y.-H. Zhao, G. Zhao, L.-C. Deng, X.-W. Liu, Y.-P. Jing, G. Wang, H.-T. Zhang, J.-R. Shi, X.-Q. Cui, et al., arXiv:1505.01570 (2015).Google Scholar
  11. 11.
    S. Sichevsky and O. Malkov, Baltic Astron. 25, 67 (2016).ADSGoogle Scholar
  12. 12.
    B. Shustov, A. I. Gómez de Castro, M. Sachkov, A. Moisheev, E. Kanev, J. López-Santiago, O.Malkov, D. Nasonov, G. Belén Perea, N. Sánchez, et al., Astrophys. Space Sci. 354, 155 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Boyarchuk, B. M. Shustov, I. S. Savanov, M. E. Sachkov, D. V. Bisikalo, L. I. Mashonkina, D. Z. Wiebe, V. I. Shematovich, Y. A. Shchekinov, T. A. Ryabchikova, N. N. Chugai, P. B. Ivanov, N. V. Voshchinnikov, A. I. Gomez de Castro, S. A. Lamzin, et al., Astron. Rep. 60, 1 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    I. Iben, Jr. and R. J. Talbot, Astrophys. J. 144, 968 (1966).ADSCrossRefGoogle Scholar
  15. 15.
    B. A. Twarog, Astrophys. J. 242, 242 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    V.V. Muzylev, Nauch. Inform. Astron. Sov. ANSSSR 41, 94 (1978).ADSGoogle Scholar
  17. 17.
    V. I. Myakutin and A. E. Piskunov, Astron. Rep. 39, 316 (1995).ADSGoogle Scholar
  18. 18.
    O. Y. Malkov, S. G. Sichevskij, and D. A. Kovaleva, Mon. Not. R. Astron. Soc. 401, 695 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    O. Malkov, S. Sichevskij, D. Kovaleva, and V. Myakutin, in Stellar Populations—Planning for the Next Decade, Ed. by G. R. Bruzual and S. Charlot, IAU Symp. 262, 379 (2010).ADSGoogle Scholar
  20. 20.
    F. Pont and L. Eyer, Mon. Not. R. Astron. Soc. 351, 487 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    B. R. Jørgensen and L. Lindegren, Astron. Astrophys. 436, 127 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    L. da Silva, L. Girardi, L. Pasquini, J. Setiawan, O. von der Lühe, J. R. de Medeiros, A. Hatzes, M. P. Döllinger, and A. Weiss, Astron. Astrophys. 458, 609 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    G. Takeda, E. B. Ford, A. Sills, F. A. Rasio, D. A. Fischer, and J. A. Valenti, Astrophys. J. Suppl. 168, 297 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    C. A. L. Bailer-Jones, Mon. Not. R. Astron. Soc. 411, 435 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    A. M. Serenelli, M. Bergemann, G. Ruchti, and L. Casagrande, Mon. Not._R. Astron. Soc. 429, 3645 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    R. Schönrich and M. Bergemann, Mon. Not. R. Astron. Soc. 443, 698 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    F. R. N. Schneider, N. Langer, A. de Koter, I. Brott, R. G. Izzard, and H. H. B. Lau, Astron. Astrophys. 570, A66 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    S. G. Sichevskij, Astron. Rep. 60, 598 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    S. G. Sichevskij, Astron. Rep. 60, 816 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    C. Georgy, S. Ekström, P. Eggenberger, G. Meynet, L. Haemmerlé, A. Maeder, A. Granada, J. H. Groh, R. Hirschi, N. Mowlavi, et al., Astron. Astrophys. 558, A103 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    M. Asplund, N.Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    E. E. Salpeter, Astrophys. J. 121, 161 (1955).ADSCrossRefGoogle Scholar
  33. 33.
    O. Y. Malkov, Mon. Not. R. Astron. Soc. 382, 1073 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    V. Silva Aguirre, G. R. Davies, S. Basu, J. Christensen-Dalsgaard, O. Creevey, T. S. Metcalfe, T. R. Bedding, L. Casagrande, R. Handberg, M. N. Lund, et al., Mon. Not. R. Astron. Soc. 452, 2127 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    M. H. Pinsonneault, Y. Elsworth, C. Epstein, S. Hekker, S. Mészáros, W. J. Chaplin, J. A. Johnson, R. A. Garciá, J. Holtzman, S. Mathur, et al., Astrophys. J. Suppl. 215, 19 (2014).ADSCrossRefGoogle Scholar
  36. 36.
    S. M. Ermakov and G. A. Mikhailov, Statistical Modeling (Nauka, Moscow, 1982) [in Russian].MATHGoogle Scholar
  37. 37.
    I.M. Sobol’, Monte Carlo Method (Nauka, Moscow, 1978) [in Russian].MATHGoogle Scholar
  38. 38.
    U. Heiter, P. Jofré, B. Gustafsson, A. J. Korn, C. Soubiran, and F. Thévenin, arXiv: 1506.0609 (2015).Google Scholar
  39. 39.
    A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. Dal Cero, S. Rubele, and A. Nanni, Mon. Not. R. Astron. Soc. 427, 127 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    L.-C. Deng, H. J. Newberg, C. Liu, J. L. Carlin, T. C. Beers, L. Chen, Y.-Q. Chen, N. Christlieb, C. J. Grillmair, P. Guhathakurta, et al., Res. Astron. Astrophys. 12, 735 (2012).ADSCrossRefGoogle Scholar
  41. 41.
    B. Yanny, C. Rockosi, H. J. Newberg, G. R. Knapp, J. K. Adelman-McCarthy, B. Alcorn, S. Allam, C. Allende Prieto, D. An, K. S. J. Anderson, et al., Astron. J. 137, 4377 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    I. Ramírez and J. Meléndez, Astrophys. J. 626, 446 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    S. Sichevskij, Astron. Rep. 56, 710 (2012).ADSCrossRefGoogle Scholar
  44. 44.
    S. G. Sichevskiy, A. V. Mironov, and O. Y. Malkov, Astron. Nachr. 334, 832 (2013).ADSCrossRefGoogle Scholar
  45. 45.
    S. G. Sichevskij, A. V. Mironov, and O. Y. Malkov, Astrophys. Bull. 69, 160 (2014).ADSCrossRefGoogle Scholar
  46. 46.
    S. V. Karpov, O. Y. Malkov, and A. V. Mironov, Astrophys. Bull. 67, 82 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    A. Alonso, S. Arribas, and C. Martinez-Roger, Astron. Astrophys. 313, 873 (1996).ADSGoogle Scholar
  48. 48.
    T. Kinman and F. Castelli, Astron. Astrophys. 391, 1039 (2002).ADSCrossRefGoogle Scholar
  49. 49.
    I. Ramírez and J. Meléndez, Astrophys. J. 626, 465 (2005).ADSCrossRefGoogle Scholar
  50. 50.
    J. I. González Hernández and P. Bonifacio, Astron. Astrophys. 497, 497 (2009).ADSCrossRefGoogle Scholar
  51. 51.
    F. Castelli and R. L. Kurucz, in Modelling of Stellar Atmospheres, Ed. by N. Piskunov, W. W. Weiss, and D. F. Gray, IAU Symp. 210, 20P (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations