Approximation of the Spatial Spectrum of Nonlinear Beams with the Axis Inclined to the Emitting Surface

Abstract

Oblique propagation with respect to the plane emitting high-intensity acoustic beams is considered. An approximation of the d’Alembert operator is proposed, which makes it possible to derive an evolutionary equation suitable for any beam propagation angles. A Khokhlov–Zabolotskaya-type equation for oblique beam propagation is formulated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    K. V. Avilov, Sov. Phys. Acoustics. 41 (1), 1 (1995).

    ADS  Google Scholar 

  2. 2

    K. V. Avilov, S. N. Kulichkov, and O. E. Popov, in Proc. 16th Academician L. M. Brekhovskikh School-Seminar Jointed with 31st Session of Russian Acoustical Society “Ocean’s Acoustics” (GEOS, Moscow, 2018), p. 13.

  3. 3

    L. R. Gavrilov, Acoust. Phys. 56 (6), 1097 (2010).

    ADS  Article  Google Scholar 

  4. 4

    S. A. Ilyin, P. V. Yuldashev, V. A. Khokhlova, L. R. Gavrilov, P. B. Rosnitskiy, and O. A. Sapozhnikov, Acoust. Phys. 61 (1), 52 (2015).

    ADS  Article  Google Scholar 

  5. 5

    O. V. Rudenko and B. O. Enflo, Acustica 86, 229 (2000).

    Google Scholar 

  6. 6

    A. N. Dubrovskii, O. V. Rudenko, and V. A. Khokhlova, Acoust. Phys. 42 (5), 550 (1996).

    ADS  Google Scholar 

  7. 7

    P. Blank-Benon, B. Lipkens, L. Dallois, M. F. Hamilton, and D. T. Blackstock, J. Acoust. Soc. Am. 111 (1), 487 (2002).

    ADS  Article  Google Scholar 

  8. 8

    G. S. Golitsyn and V. I. Klyatskin, Izv. Acad. Sciences USSR. Atmospheric and Oceanic Physics 3 (10), 1044 (1967).

  9. 9

    V. A. Gusev and O. V. Rudenko, Acoust. Phys. 61 (2), 152 (2015).

    ADS  Article  Google Scholar 

  10. 10

    V. A. Gusev and A. O. Okunev, Uch. Zap. Fiz. Fak., No. 4, 154321 (2015).

  11. 11

    O. V. Rudenko, Acoust. Phys. 56 (4), 457 (2010).

    ADS  Article  Google Scholar 

  12. 12

    K. V. Avilov, in Proc. 9th All-Union Symp. on Diffraction and Waves Propagation Waves and Diffraction-85 (Tbilisi State Univ., Tbilisi, 1985), Vol. 2, p. 236 [in Russian].

  13. 13

    P. V. Yuldashev, I. S. Mezdrokhin, and V. A. Khokhlova, Acoust. Phys. 64 (3), 309 (2018).

    ADS  Article  Google Scholar 

  14. 14

    M. D. Collins, J. Acoust. Soc. Am. 93, 1736 (1993).

    ADS  Article  Google Scholar 

  15. 15

    M. D. Collins, R. J. Cederberg, D. B. King, and S. A. Chin-Bing, J. Acoust. Soc. Am. 100, 178 (1996).

    ADS  Article  Google Scholar 

  16. 16

    P. B. Rosnitskiy, P. V. Yuldashev, B. A. Vysokanov, and V. A. Khokhlova, Acoust. Phys. 62 (2), 151 (2016).

    ADS  Article  Google Scholar 

  17. 17

    Yu. N. Makov, Acoust. Phys. 65 (6), 670 (2019).

    ADS  Article  Google Scholar 

  18. 18

    Yu. N. Makov, Acoust. Phys. 55 (2), 160 (2009).

    ADS  Article  Google Scholar 

  19. 19

    O. V. Rudenko, Moscow Univ. Phys. Bull., No. 6, 18 (1996).

  20. 20

    O. V. Rudenko and S. N. Gurbatov, Acoust. Phys. 62 (4), 418 (2016).

    ADS  Article  Google Scholar 

  21. 21

    V. A. Gusev, Bull. Russ. Acad. Sciences: Physics, 66 (12), 1742 (2002).

  22. 22

    V. I. Goland and L. M. Kushkuley, Acoust. Phys. 55 (4-5), 496 (2009).

    ADS  Article  Google Scholar 

  23. 23

    S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, Tech. Phys. 58 (12), 1715 (2013).

    Article  Google Scholar 

  24. 24

    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  25. 25

    A. G. Kudryavtsev and O. A. Sapozhnikov, Acoust. Phys. 44 (6), 704 (1998).

    ADS  Google Scholar 

  26. 26

    B. K. Novikov, O. V. Rudenko, and V. I. Timoshenko, Nonlinear Underwater Acoustics (AIP Publishing, United States, 1987).

  27. 27

    V. A. Zverev and A. I. Kalachev, Sov. Phys. Acoustics. 16, 245 (1970).

    Google Scholar 

  28. 28

    O. V. Rudenko and S. I. Soluyan, Sov. Phys. Acoustics. 18 (3), 352 (1973).

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-02-00493-a).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Gusev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gusev, V.A. Approximation of the Spatial Spectrum of Nonlinear Beams with the Axis Inclined to the Emitting Surface. Acoust. Phys. 66, 565–579 (2020). https://doi.org/10.1134/S1063771020060032

Download citation

Keywords:

  • oblique propagation
  • nonlinear acoustic beams