Skip to main content
Log in

A Mixed Analytical-Numerical Method for the Vibro-Acoustic Analysis of an Underwater Ring-Stiffened Cylindrical Shell Containing Substructures

  • ACOUSTIC SIGNAL PROCESSING AND COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A new sono-elastic substructure method is proposed in this paper to improve the computational efficiency of the hull-substructure coupled and fluid-structure interacted vibration and acoustic radiation of a submerged cylindrical-shell-type vehicle. The typical part of the vehicle structure is divided into the main hull and the internal substructures. The fluid-structure interaction problem of the main hull is solved by an analytical method based on the simplified model of a single-hull ring-stiffened cylindrical shell simply supported at both ends. Meanwhile, the substructures are numerically modeled through the Finite Element Method, with the condensed dynamic stiffness matrices of them obtained via the Superelement Method of Modal Synthesis. The main hull and the internal substructures are then integrated according to the boundary compatibility conditions at the connecting parts. Thus, a Mixed Analytical-Numerical Substructure (MANS) method is formulated. The applicability of this method is validated by two numerical examples as well as the test results of a large-scale submerged structural model. It is shown that the MANS method is suitable for the prediction of vibration and acoustic radiation of typical cylindrical-shell-type submerged structures in the medium frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. W. L. Wang and Z. R. Du, Structure Vibration and Dynamic Substructure Analysis Method (Fudan Univ. Press, Shanghai, 1985).

    Google Scholar 

  2. X. G. Yin, H. Chen, and K. L. Jian, Substructure Method for Structure Vibration Analysis (China Railway Publ. House, Beijing, 1991).

    Google Scholar 

  3. M. Amabili, J. Fluids Struct. 11 (5), 507 (1997).

  4. C. P. Zou and D. S. Chen, J. Shanghai Jiaotong Univ. 37, 1213 (2003).

  5. P. Persson, K. Persson, and G. Sandberg, J. Fluids Struct. 61, 205 (2016).

  6. B. Laulagnet and J. L. Guyader, J. Sound Vib. 138, 173 (1990).

  7. C. Soize, J. Acoust. Soc. Am. 94, 849 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  8. L. P. Franzoni and C. D. Park, J. Acoust. Soc. Am. 108, 2856 (2000).

    Article  ADS  Google Scholar 

  9. C. D. Park, J. Acoust. Soc. Am. 116, 2956 (2004).

    Article  ADS  Google Scholar 

  10. J. Liang and B. A. T. Petersson, J. Sound Vib. 247, 703 (2001).

  11. A. Pratellesi, M. Viktorovitch, N. Baldanzini, and M. Pierini, J. Sound Vib. 309, 545 (2008).

  12. V. Meyer, L. Maxit, J. L. Guyader, and T. Leissing, J. Sound Vib. 360, 260 (2016).

  13. V. Meyer, L. Maxit, and C. Audoly, J. Acoust. Soc. Am. 140, 1609 (2016).

    Article  ADS  Google Scholar 

  14. M. B. Salin, E. M. Sokov, and A. S. Suvorov, Hydroacoustics 14, 36 (2011

    Google Scholar 

  15. A. S. Suvorov, E. M. Sokov, and P. V. Artel’nyi, Acoust. Phys. 60, 694 (2014).

    Article  ADS  Google Scholar 

  16. M. S. Zou and Y. S. Wu, J. Ship Mech. 18, 574 (2014).

  17. M. S. Zou, PhD Thesis (China Ship Scientific Research Center, Wuxi, 2014).

  18. M. S. Zhou, Y. S. Wu, and Y. L. Ye, J. Hydrodyn., Ser. B 22, 844 (2010).

    Google Scholar 

  19. R. E. D. Bishop, W. G. Price, and Y. S. Wu, Philos. Trans. R. Soc. London, Ser. A 316, 375 (1986).

    Google Scholar 

  20. W. J. Yun, G. B. Duan, and Z. G. Hu, Shanghai Mech. 4, 8 (1982).

    Google Scholar 

  21. D. Ranlet, F. L. Dimaggio, H. H. Bleich, and M. L. Baron, Comput. Struct. 7, 355 (1977).

    Article  Google Scholar 

  22. Z. Y. Cao, Vibration Theory of Plates and Shells (China Railway Publ. House, Beijing, 1989).

    Google Scholar 

  23. P. R. Stepanishen, J. Acoust. Soc. Am. 71, 813 (1982).

    Article  ADS  Google Scholar 

  24. S. X. Liu and M. S. Zou, J. Acoust. Soc. Am. 143, EL160 (2018).

    Article  ADS  Google Scholar 

  25. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, 2nd ed. (Springer, New York, 2011).

    Book  MATH  Google Scholar 

  26. M. S. Zou, Y. S. Wu, and Y. M. Liu, Acta Mech. Sin. 30, 59 (2014).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (Grant no. 2017YFB0202701), the National Natural Science Foundation of China (Grant nos. 11772304, 51709241), and the Natural Science Foundation of Jiangsu Province of China (Grant no. BK20170216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Song Zou.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, MS., Wu, YS., Liu, JD. et al. A Mixed Analytical-Numerical Method for the Vibro-Acoustic Analysis of an Underwater Ring-Stiffened Cylindrical Shell Containing Substructures. Acoust. Phys. 64, 596–604 (2018). https://doi.org/10.1134/S1063771018050111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018050111

Keywords:

Navigation