Skip to main content
Log in

Diagnostic Mode Detecting Solid Mineral Inclusions in Medical Ultrasound Imaging

  • PHYSICAL FOUNDATIONS OF TECHNICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The proposed ultrasound imaging mode allows detection of objects, which essentially differ in their scattering properties from the surrounding tissues and liquids. The objects in question are primarily microcalcifications, renal and urinary stones. Our previous study has shown that the Doppler signals from these objects have two components common for echoes from solid mineral inclusions. They can be in superposition with the blood and noise signals. One of these two mineral-related components is characterized by cavitation, the other – by elastic vibrations of the object presumably caused by acoustic radiation force. According to statistical and energy parameters, these components differ from each other, as well as from noise and blood echoes. The article proposes a practical method for identifying signals with mineral-related components. This method is the base for the novel diagnostic visualization mode specifically designed for the mineral inclusions detection with ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. V. Leonov, N. S. Kulberg, A. I. Gromov, S. P. Morozov, and S. Yu. Kim, Acoust. Phys. 64 (1), 105 (2018).

    Article  ADS  Google Scholar 

  2. J. Denstedt and J. Rosette, International Consultation on Urological Diseases. Stone Diseases (Société Internationale d’Urologie, Glasgow, 2014).

    Google Scholar 

  3. A. I. Gromov and S. Yu. Kubova, Ultrasound Artifacts (Vidar, Moscow, 2007) [in Russian].

    Google Scholar 

  4. C. K. Holland, C. X. Deng, R. E. Apfel, J. L. Alderman, L. A. Fernandex, and K. J. W. Taylor, Ultrasound Med. Biol. 22 (7), 917 (1996).

    Article  Google Scholar 

  5. W. Lu, PhD Thesis (Department of Bioengineering, Univ. of Washington, Seattle, WA, 2012).

  6. W. Brisbane, M. R. Bailey, and M. D. Sorensen, Nat. Rev. Urol., No. 13, 654 (2016).

  7. J. C. Simon, Y. N. Wang, B. W. Cunitz, J. Thiel, F. Starr, Z. Liu, and M. R. Bailey, Ultrasound Med. Biol. 43 (5), 877 (2017).

    Article  Google Scholar 

  8. M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, Ultrasound Med. Biol. 34 (4), 546 (2008).

    Article  Google Scholar 

  9. J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 60 (4), 685 (2013).

    Article  Google Scholar 

  10. V. G. Andreev, A. V. Shanin, and I. Yu. Demin, Acoust. Phys. 60 (6), 704 (2014).

    Article  ADS  Google Scholar 

  11. V. G. Andreev, I. Yu. Demin, Z. A. Korolkov, and A. V. Shanin, Bull. Russ. Acad. Sci.: Phys. 80 (10), 1191 (2016).

    Article  Google Scholar 

  12. A. V. Nikolaeva, S. A. Tsysar, and O. A. Sapozhnikov, Acoust. Phys. 62 (1), 38 (2016).

    Article  ADS  Google Scholar 

  13. O. A. Sapozhnikov and M. R. Bailey, J. Acoust. Soc. Am. 133 (2), 661 (2013).

    Article  ADS  Google Scholar 

  14. O. A. Sapozhnikov, L. A. Trusov, A. I. Gromov, N. R. Owen, M. R. Bailey, L. A. Crum, J. Acoust. Soc. Am. 120 (5), 3109 (2006).

    Article  ADS  Google Scholar 

  15. O. A. Sapozhnikov, N. R. Owen, M. R. Bailey, A. I. Gromov, L. A. Crum, in Proc. 14th Int. Congress on Sound and Vibration ICSV14 (Cairns, 2007), Section Bioacoustics, p. 1.

  16. C. Seghal, US Patent No. 5997477 (1999).

  17. S. P. Weinstein, C. Seghal, E. F. Conant, and J. A. Patton, Radiology 224 (1), 265 (2002).

    Article  Google Scholar 

  18. N. S. Kul’berg, A. I. Gromov, D. V. Leonov, L. V. Osipov, M. S. Usanov, S. P. Morozov, and A. V. Vladzimirskii, Radiol.-Prakt., No. 1 (67), 37 (2018).

  19. D. V. Leonov, N. S. Kul’berg, V. A. Fin, and A. I. Gromov, Pat. Appl. No. 2017113162 (2017).

  20. N. S. Kul’berg, and D. V. Leonov, PC Software Certificate No. 2018610936 (19.01.2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Leonov or N. S. Kulberg.

Additional information

1The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, D.V., Kulberg, N.S., Gromov, A.I. et al. Diagnostic Mode Detecting Solid Mineral Inclusions in Medical Ultrasound Imaging. Acoust. Phys. 64, 624–636 (2018). https://doi.org/10.1134/S1063771018050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018050068

Keywords:

Navigation