Advertisement

Acoustical Physics

, Volume 64, Issue 2, pp 186–189 | Cite as

Dependence of the Mean Intensity of a Low-Frequency Acoustic Field on the Bottom Parameters of a Shallow Sea with Random Volumetric Water-Layer Inhomogeneities

  • O. E. Gulin
  • I. O. Yaroshchuk
Ocean Acoustics. Hydroacoustics
  • 24 Downloads

Abstract

The study is devoted to statistical modeling of low-frequency acoustic signal propagation in a twodimensionally inhomogeneous random shallow sea with a thermocline and differing penetrability of the bottom. Calculations are performed using the local-mode representation of the solution in the one-way propagation approximation. Plots are presented for the behavior of the mean acoustic field intensity for different sound velocity and density values in the bottom. It is shown that the earlier described effect of a decrease in propagation losses in a model randomly inhomogeneous shallow sea with an absorbing bottom significantly depends on the parameters of bottom sediments and is more strongly manifested for bottom boundaries with greater penetrability.

Keywords

randomly inhomogeneous shallow sea acoustic field fluctuations mean intensity local modes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. O. Yaroshchuk and O. E. Gulin, Statistical Simulation Method for Hydro-Acoustical Problems (Dal’nauka, Vladivostok, 2002) [in Russian].Google Scholar
  2. 2.
    O. E. Gulin and I. O. Yaroshchuk, J. Comput. Acoust. 22 (1), 1440002 (2014).MathSciNetCrossRefGoogle Scholar
  3. 3.
    O. E. Gulin and I. O. Yaroshchuk, J. Comput. Acoust. 22 (1), 1440006 (2014).MathSciNetCrossRefGoogle Scholar
  4. 4.
    O. E. Gulin and I. O. Yaroshchuk, Dokl. Earth Sci. 458 (1), 1121 (2014).CrossRefGoogle Scholar
  5. 5.
    O. E. Gulin and I. O. Yaroshchuk, Acoust. Phys. 63 (2), 168 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    W. Kohler and G. C. Papanicolaou, in Waves Propagation and Underwater Acoustics, Ed. by J. B. Keller and J. S. Papadakis (Springer, Berlin, Heidelberg, 1977; Mir, Moscow, 1980).Google Scholar
  7. 7.
    L. B. Dozier and F. D. Tappert, J. Acoust. Soc. Am. 63, 353 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    L. B. Dozier and F. D. Tappert, J. Acoust. Soc. Am. 64, 533 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    X. Tang, F. D. Tappert, and D. B. Creamer, J. Acoust. Soc. Am. 120 (6), 3539 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    A. G. Voronovich and V. E. Ostashev, J. Acoust. Soc. Am. 119, 1406 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. G. Voronovich and V. E. Ostashev, J. Acoust. Soc. Am. 125, 99 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    J. A. Colosi and A. K. Morozov, J. Acoust. Soc. Am. 126, 1026 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Colosi, T. F. Duda, and A. K. Morozov, J. Acoust. Soc. Am. 131 (2), 1749 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Lun’kov and V. G. Petnikov, Acoust. Phys. 56 (3), 328 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Lun’kov and V. G. Petnikov, Acoust. Phys. 60 (1), 61 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Raevskii and A. I. Khil’ko, Acoust. Phys. 61 (3), 340 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    O. E. Gulin, Acoust. Phys. 52 (1), 17 (2006).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    O. E. Gulin, Acoust. Phys. 54 (4), 495 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    O. E. Gulin, Acoust. Phys. 56 (5), 613 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    I. O. Yaroshchuk, A. P. Leont’ev, A. V. Kosheleva, A. A. Pivovarov, A. N. Samchenko, D. V. Stepanov, and A. N. Shvyryov, Russ. Meteorol. Hydrol. 41 (9), 629 (2016).CrossRefGoogle Scholar
  21. 21.
    V. A. Grigor’ev, A. A. Lun’kov, and V. G. Petnikov, Acoust. Phys. 61 (1), 85 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Il’ichev Pacific Oceanological Institute, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations