Skip to main content
Log in

Peculiarities of Acoustic Wave Reflection from a Boundary or Layer of a Two-Phase Medium

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A mathematical model is presented for determining the oblique incidence of an acoustic wave at both a boundary and layer of a gas–drop mixture or a bubbly liquid of finite thickness. The basic wave reflection and transmission patterns are established for the incidence of a low-frequency acoustic wave at an interface between a pure gas and a gas–drop mixture, as well as between a pure and bubbly liquid. A range of varying volume fractions for a drop is determined, for which the zero value of the reflection coefficient is possible for low frequencies at oblique incidence. It is shown that the reflection coefficient will never be zero at angles of incidence above 24.5° from a gas–drop mixture at a pure gas boundary; however, when a wave is incident from a pure gas at a gas–drop mixture boundary, a zero reflection coefficient is possible for nonzero angles of incidence and the volume fraction of inclusions. The results of calculating reflection of an acoustic wave from a two-phase layer of a medium with a finite thickness are presented. It is established that the minimum reflection coefficient is possible depending on the perturbation frequency for a certain range of angles of incidence for the boundary or the layer of the gas–drop mixture, which is governed mainly by difference in densities between it and the pure gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. A. Gusev and O. V. Rudenko, Acoust. Phys. 61 (2), 152 (2015).

    Article  ADS  Google Scholar 

  2. V. A. Grigor’ev, A. A. Lun’kov, and V. G. Petnikov, Acoust. Phys. 61 (1), 85 (2015).

    Article  ADS  Google Scholar 

  3. V. Sh. Shagapov and V. V. Sarapulova, Acoust. Phys. 61 (1), 37 (2015).

    Article  ADS  Google Scholar 

  4. J. E. Cole and R. A. Dobbins, J. Atmos. Sci. 28 (2), 202 (1971).

    Article  ADS  Google Scholar 

  5. G. A. Davidson, J. Atmos. Sci. 32 (11), 2201 (1975).

    Article  ADS  Google Scholar 

  6. D. A. Gubaidullin and A. I. Ivandaev, Prikl. Mekh. Tekh. Fiz., No. 6, 27 (1990).

    Google Scholar 

  7. R. Ishii and H. Matsuhisa, J. Fluid Mech. 130, 259 (1983).

    Article  ADS  Google Scholar 

  8. V. Sh. Shagapov and V. V. Sarapulova, Izv., Atmos. Ocean. Phys. 50 (6), 602 (2014).

    Article  Google Scholar 

  9. V. Sh. Shagapov and V. V. Sarapulova, J. Appl. Mech. Tech. Phys. 56 (5), 838 (2015).

    Article  ADS  Google Scholar 

  10. V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, Phys. Rev. B 91, 020301 (2015).

    Article  ADS  Google Scholar 

  11. O. B. Zel’manskii, S. N. Petrov, and A. A. Kazeka, Dokl. Beloruss. Gos. Univ. Inf. Radioelektron. 78 (8), 30 (2013).

    Google Scholar 

  12. K. Lee, B. K. Choi, and S. W. Yoon, J. Korean Phys. Soc. 40 (2), 256 (2002).

    Google Scholar 

  13. T. M. Tien, MT Thesis (Tainan, National Cheng Kung Univ., 2001).

  14. V. Leroy, A. Strybulevych, J. H. Page, and M. G. Scanlon, J. Acoust. Soc. Am. 123 (4), 1931 (2008).

    Article  ADS  Google Scholar 

  15. D. A. Gubaidullin and Yu. V. Fedorov, Fluid Dyn. 52 (1), 107 (2017).

    Article  MathSciNet  Google Scholar 

  16. R. I. Nigmatulin, D. A. Gubaidullin, and A. A. Nikiforov, Dokl. Phys. 59 (6), 286 (2014).

    Article  ADS  Google Scholar 

  17. R. I. Nigmatulin, Dynamics of Multi-Phase Media (Nauka, Moscow, 1987), Part 1 [in Russian].

    Google Scholar 

  18. S. Temkin, Suspension Acoustics: An Introduction to the Physics of Suspensions (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  19. D. A. Gubaidullin, Dynamics of Two-Phase Vapor-Gas-Droplet Media (Izd. Kazanskogo Matematicheskogo Obshchestva, Kazan, 1998) [in Russian].

    Google Scholar 

  20. V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Dynamics of Gas, Vapor and Liquid Media (Energoatomizdat, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  21. A. Yu. Varaksin, High Temp. 51 (3), 377 (2013).

    Article  Google Scholar 

  22. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  23. D. A. Gubaidullin and Yu. V. Fedorov, Prikl. Mat. Mekh. 77 (5), 743 (2013).

    Google Scholar 

  24. A. O. Maksimov and Yu. A. Polovinka, Acoust. Phys. 63 (1), 26 (2017).

    Article  ADS  Google Scholar 

  25. D. A. Gubaidullin and Yu. V. Fedorov, Acoust. Phys. 62 (2), 179 (2016).

    Article  ADS  Google Scholar 

  26. A. Prosperetti, Annu. Rev. Fluid Mech. 49, 221 (2017).

    Article  ADS  Google Scholar 

  27. M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  28. S. N. Gurbatov and O. V. Rudenko, Acoustics in Problems (Nauka, Fizmatlit, Moscow, 1996) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gubaidullin.

Additional information

Original Russian Text © D.A. Gubaidullin, Yu.V. Fedorov, 2018, published in Akusticheskii Zhurnal, 2018, Vol. 64, No. 2, pp. 162–173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Fedorov, Y.V. Peculiarities of Acoustic Wave Reflection from a Boundary or Layer of a Two-Phase Medium. Acoust. Phys. 64, 164–174 (2018). https://doi.org/10.1134/S1063771018020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018020057

Keywords

Navigation