Acoustical Physics

, Volume 64, Issue 2, pp 131–143 | Cite as

Scattering of an Acoustic Field by Refraction–Density Inhomogeneities with a Small Wave Size and Solution of the Problem of Direct Scattering in an Inhomogeneous Medium

  • K. V. Dmitriev
Classical Problems of Linear Acoustics and Wave Theory


The paper considers acoustic wave scattering by inhomogeneities with a small wave size using the Green’s function apparatus, which makes it possible universally to take into account both the refraction and density components of an inhomogeneity. Estimates for the multipole components of a field scattered by a nonresonance inhomogeneity are presented. For an inhomogeneity with small dimensions, it suffices to consider only monopole and dipole scattering. These conclusions are confirmed by an analysis of the field scattered by a circular cylinder with a small wave radius. The results are used to numerically simulate a Lippmann–Schwinger equation. The form of the discretized matrix Green’s function for identical values of the spatial arguments is presented. This makes it possible to take into account multiple scattering processes within a discretization element with a small wave size. Its use automatically fulfills the relations between the phase and amplitude of secondary acoustic field sources.


Lippmann–Schwinger equation wave scattering matrix Green’s functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Burov and S. A. Morozov, Acoust. Phys. 47 (6), 659 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    K. V. Dmitriev, Acoust. Phys. 61 (6), 623 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    P. G. Bergmann, J. Acoust. Soc. Am. 17 (4), 329 (1946).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Goryunov and A. V. Saskovets, Scattering Inverse Problems in Acoustics (Moscow State Univ., Moscow, 1989) [in Russian].Google Scholar
  5. 5.
    V. A. Burov, K. V. Dmitriev, and S. N. Sergeev, Acoust. Phys. 55 (3), 298 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. N. Barkhatov, N. V. Gorskaya, A. A. Goryunov, S. N. Gurbatov, V. G. Mozhaev, and O. V. Rudenko, Acoustics in Problems (Nauka, Fizmatlit, Moscow, 1996) [in Russian].Google Scholar
  7. 7.
    K. V. Dmitriev, Bull. Russ. Acad. Sci.: Phys. 79 (12), 1488 (2015).CrossRefGoogle Scholar
  8. 8.
    Yu. I. Bobrovnitskii, Acoust. Phys. 53 (1), 100 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    O. V. Rudenko, L. E. Sobisevich, A. L. Sobisevich, and C. M. Hedberg, Dokl. Phys. 45 (9), 485 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Babich, M. B. Kapilevich, S. G. Mikhlin, G. I. Natanson, P. M. Riz, L. N. Slobodetskii, and M. M. Smirnov, Linear Equations for Mathematical Physics (Nauka, Moscow, 1964) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations