Managing the Magnetic Properties of NiCo/C Nanocomposites


The creation of new types of radio-absorbing materials (RAMs) is relevant due to the intensive development of microwave radio electronic devices, their increasing power, and their active implementation in all spheres of life. A RAM based on NiCo/C nanocomposite can be used to reduce the interference and ensure the electromagnetic compatibility. The NiCo/C metal-carbon nanocomposites based on the NiCl2/CoCl2/polyacrylonitrile (PAN) precursors are synthesized using IR heating. The results of studies of NiCo/C nanocomposites by X-ray phase analysis (XPA), transmission electron microscopy, and vibration magnetometry show the dependence of the structure and properties of NiCo/C nanocomposites on the synthesis temperature, concentration, and metal ratio in the precursor. The results of XPA shows the formation of NiCo metal nanoparticles that have been stabilized in the carbon matrix during the IR pyrolysis of the precursor. Increasing the synthesis temperature from 350 to 800°C leads to the average size of NiCo nanoparticles growing from 10 to 80 nm. It is found that the formation of the alloy occurs due to the gradual dissolution of cobalt in nickel with the simultaneous transition of cobalt from the hcp modification to FCC. The structure of nanocomposites is studied by the transmission electron microscopy of the samples synthesized at 600°C. It is found that an increase in the metal concentration in the precursor from 10 to 40 wt % increases both the average size of NiCo nanoparticles in the NiCo/C nanocomposite content and the concentration of the nanoparticles in the carbon matrix. The study of the magnetic properties of nanocomposites shows an almost linear increase in the saturation magnetization from 5.94 to 25.7 A m2/kg with an increase in the content of metals in the precursor from 10 to 40 wt %. The change in the ratio of metals from Ni : Co = 4 : 1 to Ni : Co = 1 : 4 results in the magnetization increasing from 11.46 to 23.3 A m2/kg.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.


  1. 1

    Gondal, M.A., Saleh, T.A., and Drmosh, Q.A., Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization, Appl. Surf. Sci., 2012, vol. 258, no. 18, pp. 6982–6986.

    Article  Google Scholar 

  2. 2

    Lizunova, A.A., Efimov, A.A., Arsenov, P.V., and Ivanov, V., Influence of the sintering temperature on morphology and particle size of silver synthesized by spark discharge, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 307, p. 012081.

  3. 3

    Ming, J.H., Bin, L., and Shu, H., Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni Co alloy microstructures, Nano Res., 2008, vol. 1, pp. 303–313.

    Article  Google Scholar 

  4. 4

    Sudhakar, P., Daniel, B.S.S., and Jeevanandam, P., Synthesis of nanocrystalline Co-Ni alloys by precursor approach and studies on their magnetic properties, J. Magn. Magn. Mater., 2011, vol. 323, no. 17, pp. 2271–2280.

    Article  Google Scholar 

  5. 5

    Shuaiwei Wen, Tao Yang, Naiqin Zhao, Liying Ma, and Enzuo Liu, Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution, Appl. Catal. B: Environ., 2019, vol. 258, p. 117953.

    Article  Google Scholar 

  6. 6

    Yirong Zhu, Zhibin Wu, Mingjun Jing, Xuming Yang, Weixin Song, and Xiaobo Ji, Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors, J. Power Sources, 2015, vol. 273, pp. 584–590.

    Article  Google Scholar 

  7. 7

    Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., and Farokhzad, O.C., Nanoparticles in medicine: Therapeutic applications and developments, Clin. Pharmacol. Ther., 2008, vol. 83, no. 5, pp. 761–769.

    Article  Google Scholar 

  8. 8

    Arsenov, P.V., Vlasov, I.S., Efimov, A.A., Minkov, K.N., and Ivanov, V.V., Aerosol jet printing of platinum microheaters for the application in gas sensors, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 473, p. 012042.

  9. 9

    Efimov, A.A., Arsenov, P.V., Protas, N.V., Minkov, K.N., Urazov, M.N., and Ivanov, V.V., Dry aerosol jet printing of conductive silver lines on a heated silicon substrate, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 307, p. 012082.

  10. 10

    Arsenov, P.V., Efimov, A.A., Protas, N.V., and Ivanov, V.V., Influence of the operating parameters of the needle-plate electrostatic precipitator on the size distribution of aerosol particles, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 324, p. 012016.

  11. 11

    Danfeng Zhang, Fangxing Xu, Jin Lin, Zhenda Yang, and Min Zhang, Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range, Carbon, 2014, vol. 80, pp. 103–111.

    Article  Google Scholar 

  12. 12

    Juan Xiong, Zhen Xiang, Jing Zhao, Lunzhou Yu, Erbiao Cui, Bowen Deng, Zhicheng Liu, Rui Liu, and Wei Lu, Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance, Carbon, 2019, vol. 154, pp. 391–401.

    Article  Google Scholar 

  13. 13

    Cuiping Li, Jing Sui, Ziqiu Zhang, Xiaohui Jiang, Zhiming Zhang, and Liangmin Yu, Microwave-assisted synthesis of tremella-like NiCo/C composites for efficient broadband electromagnetic wave absorption at 2–40 GHz, Chem. Eng. J., 2019, vol. 375, p. 122017.

    Article  Google Scholar 

  14. 14

    Saichun Hu, Yuming Zhou, Man He, Qiang Liao, Haiyong Yang, Haifang Li, Ran Xu, and Qinghua Ding, Hollow Ni-Co layered double hydroxides-derived NiCo-alloy@g-C3N4 microtubule with high-performance microwave absorption, Mater. Lett., 2018, vol. 231, pp. 171–174.

    Article  Google Scholar 

  15. 15

    Weichun Ye, Jiajia Fu, Qin Wang, Chunming Wang, and Desheng Xue, Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets, J. Magn. Magn. Mater., 2015, vol. 395, pp. 147–151.

    Article  Google Scholar 

  16. 16

    Kozhitov, L.V., Kuzmenko, A.P., Kozhitov, S.L., Muratov, D.G., Harseev, V.A., Rodionov, V.V., Popkova, A.V., Matveev, K.E., and Yakushko, E., Influence of the ratio of metal composed nanocomposites Fe-Co/C on phase composition, J. Nano- Electron. Phys., 2013, vol. 5, no. 4, p. 04008.

    Google Scholar 

  17. 17

    Kozhitov, L.V., Muratov, D.G., Yakushko, E.V., Kozhitov, S.L., Savchenko, A.G., Shchetinin, I.V., Emelyanov, S.G., and Chervjakov, L.M., The synthesis of metalcarbon nanocomposite Ni/C on the basis of polyacrylonitrile, J. Nano- Electron. Phys., 2013, vol. 5, no. 4, p. 04007.

    Google Scholar 

  18. 18

    Kozhitov, L.V., Bulatov, M.F., Korovushkin, V.V., Kostishin, V.G., Muratov, D.G., Shipko, M.N., Emelyanov, S.G., and Yakushko, E., The formation and study of the FeCo nanoparticles alloy in structure of metal-carbon nanocomposites FeCo/C, J. Nano- Electron. Phys., 2015, vol. 7, no. 4, p. 04103.

    Google Scholar 

  19. 19

    Kozhitov, L., Kuzmenko, A., Muratov, D., Rodionov, V., Popkova, A., Yakushko, E., and Dobromyslov, M., Influence of structural features and physico-chemical properties of metal-carbon nanocomposites with ferromagnetic metal inclusions on microwave radiation, J. Nano-Electron. Phys., 2014, vol. 6, no. 3, p. 03024.

    Google Scholar 

  20. 20

    Muratov, D.G., Kozhitov, L.V., Emelyanov, S.G., Yakushko, E.V., and Bulatov, M.F., The influence of synthesis temperature on the structure, composition and magnetic properties of nanocomposites NiCo/C, J. Nano-Electron. Phys., 2015, vol. 7, no. 4, p. 04071.

    Google Scholar 

  21. 21

    Yakushko, E.V., Kozhitov, L.V., Muratov, D.G., and Kostishin, V.G., NiCo/C nanocomposites: Synthesis and magnetic properties, Russ. J. Inorg. Chem., 2016, vol. 61, no. 12, pp. 1591–1595.

    Article  Google Scholar 

  22. 22

    Ghimbeu, C.M., Le Meins, J.-M., Zlotea, C., Vidal, L., Schrodj, G., Latroche, M., and Vix-Guterl, C., Controlled synthesis of NiCo nanoalloys embedded in ordered porous carbon by a novel soft-template strategy, Carbon, 2014, vol. 67, pp. 260–272.

    Article  Google Scholar 

  23. 23

    Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Librokom, 2011.

Download references


The study was carried out with the financial support of the Russian Foundation for Basic Research as part of the scientific project no. 18-33-00403, as well as with the financial support of the scholarship no. SP-691.2019.1 of the President of the Russian Federation for young scientists and graduate students and the President’s grant no. MK-2483.2019.3.

Author information



Corresponding author

Correspondence to E. V. Yakushko.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakushko, E.V., Kozhitov, L.V., Muratov, D.G. et al. Managing the Magnetic Properties of NiCo/C Nanocomposites. Russ Microelectron 49, 543–553 (2020).

Download citation


  • nanocomposites
  • magnetic nanoparticles
  • nanomaterials
  • NiCo
  • IR heating
  • polymer nanomaterials