Skip to main content
Log in

The Element of Matching on an STG DICE Cell for an Upset Tolerant Content Addressable Memory

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The TCAD simulation of charge collection from tracks of single nuclear particles directed along the normal to the logic matching element on STG DICE cells demonstrates their unique upset tolerance. The tracks used for simulation are directed normal to the microchip surface with the linear energy transfer (LET) ranging from 10 to 60 MeV cm2/mg. We investigate a 65-nm bulk CMOS logic matching element for use in content addressable memory and translation lookaside buffers. It is a matching element on an STG DICE cell with an exclusive OR logic element on two tristate inverters. The linear energy transfers in the range of 30–60 MeV cm2/mg on the tracks normal to the chip surface do not cause single event upsets in the STG DICE cell for LET = 60 MeV cm2/mg. In the output combinational logic of the matching element, short (up to 0.6 ns) noise voltage pulses for a LET ranging from 20 to 60 MeV cm2/mg can be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katunin, Yu.V., Stenin, V.Ya., and Stepanov, P.V., Modeling the characteristics of trigger elements of twophase CMOS logic, taking into account the charge sharing effect under exposure to single nuclear particles, Russ. Microelectron., 2014, vol. 43, no. 2, pp. 112–124.

    Article  Google Scholar 

  2. Stenin, V.Ya., Simulation of the characteristics of the DICE 28-nm CMOS cells in unsteady states caused by the effect of single nuclear particles, Russ. Microelectron., 2015, vol. 44, no. 5, pp. 324–334.

    Article  Google Scholar 

  3. Calin, T., Nicolaidis, M., and Velazco, R., Upset hardened memory design for submicron CMOS technology, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 2874–2878.

    Article  Google Scholar 

  4. Stenin, V.Ya. and Stepanov, P.V., Basic memory elements using DICE cells for fault-tolerant 28 nm CMOS RAM, Russ. Microelectron., 2015, vol. 44, no. 6, pp. 368–379.

    Article  Google Scholar 

  5. Stenin, V.Ya., Katunin, Yu.V., and Stepanov, P.V., Upset-resilient RAM on STG DICE memory elements with the spaced transistors into two groups, Russ. Microelectron., 2016, vol. 45, no. 6, pp. 419–432.

    Article  Google Scholar 

  6. Katunin, Yu.V. and Stenin, V.Ya., Simulation of Single Event Effects in STG DICE Memory Cells, Russ. Microelectron., 2018, vol. 47, no. 1, pp. 20–33.

    Article  Google Scholar 

  7. Narasimham, B., Bhuva, B.L., Schrimpf, R.D., Massengill, L.W., Gadlage, M.J., Holman, W.T., Witulski, A.F., Robinson, W.H., Black, J.D., Benedetto, J.M., and Eaton, P.H., Effects of guard bands and well contacts in mitigating long SETs in advanced CMOS processes, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 3, pp. 1708–1713.

    Article  Google Scholar 

  8. Warren, K.M., Stenberg, A.L., Black, J.D., Weller, R.A., Reed, R.A., Mendenhall, M.H., Schrimpf, R.D., and Massengill, L.W., Heavy ion testing and single-event upset rate prediction considerations for a DICE flip-flop, IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, pp. 3130–3137.

    Article  Google Scholar 

  9. Loveless, T.D., Jagannathan, S., Reece, T., Chetia, J., Bhuva, B.L., McCurdy, M.W., Massengill, L.W., Wen, S.-J., Wong, R., and Rennie, D., Neutron-and proton-induced single event upsets for D-and DICEflip/ flop designs at a 40 nm technology node, IEEE Trans. Nucl. Sci., 2011, vol. 58, no. 3, pp. 1008–1014.

    Article  Google Scholar 

  10. Lilja, K., Bounasser, M., Wen, S., Wong, R., Holst, J., Gaspard, N., Jagannathan, S., Loveless, D., and Bhuva, B., Single event performance and layout optimization of flip-flops in a 28-nm bulk technology, IEEE Trans. Nucl. Sci., 2013, vol. 60, no. 4, pp. 2782–2788.

    Article  Google Scholar 

  11. Pagiamtzis, K., Azizi, N., and Najm, F.N., A soft-error tolerant content-addressable memory (CAM) using an error-correcting-match scheme, in Proceedings of the IEEE Custom International Circuits Conference, San Hose, CA, Sept. 10–13, 2006, pp. 301–304.

    Google Scholar 

  12. Abbas, S.M., Lee, S., Baeg, S., and Park, S., An efficient multiple cell upsets tolerant content-addressable memory, IEEE Trans. Comput., 2014, vol. 63, no. 8, pp. 2094–2098.

    Article  MathSciNet  MATH  Google Scholar 

  13. Azizi, N. and Najm, F., A family of cells to reduce the soft-error-rate in ternary-CAM, in Proceedings of the 43rd Design Automation Conference, San Francisco, CA, July 24–28, 2006, pp. 779–784.

    Google Scholar 

  14. Eftaxiopoulos, N., Axelos, N., and Pekmestzi, K., Low leakage radiation tolerant CAM/TCAM cell, in Proceedings of IEEE International On-Line Testing Symposium (IOLTS), Halkidiki, Greece, July 6–8, 2015, pp. 206–211.

    Google Scholar 

  15. Stenin, V.Ya. and Antonyuk, A.A., Design of the 65-nm CMOS comparison element for a content-addressable memory and simulation of single-event transients, in Proceedings of the 24th Telecommunications Forum, Belgrade, 2016, pp. 413–416.

    Google Scholar 

  16. Stenin, V.Ya. and Antonyuk, A.A., Design of the CMOS comparison elements on STG DICE for a content-addressable memory and simulation of singleevent transients, Telfor J., 2017, vol. 9, no. 1, pp. 61–66.

    Article  Google Scholar 

  17. Stenin, V.Ya., Antonyuk, A.A., Katunin, Yu.V., and Stepanov, P.V., Design of logical elements for the 65-nm CMOS translation lookaside buffer with compensation of single events effects, in Proceedings of the International Siberian Conference on Control and Communications, 2017, pp. 1–6.

    Google Scholar 

  18. Wang, T., Xiao, L., and Huang, Q., Simulation study of single event effect for different N-well and deep-N-well doping in 65 nm triple-well CMOS devices, in Proceedings of International Conference on Optoelectronics and Microelectronics, 2012, pp. 505–509.

    Google Scholar 

  19. Giot, D., Roche, P., Gasiot, G., Autran, J.-L., and Harboe-Sørensen, R., Heavy ion testing and 3D simulations of multiple cell upset in 65 nm standard SRAMs, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 4, pp. 2048–2054.

    Article  Google Scholar 

  20. Uznanski, S., Gasiot, G., Roche, P., Tavernier, C., and Autran, J.-L., Single event upset and multiple cell upset modeling in commercial bulk 65-nm CMOS SRAMs and flip-flops, IEEE Trans. Nucl. Sci., 2010, vol. 57, no. 4, pp. 1876–1883.

    Article  Google Scholar 

  21. Boruzdina, A.B., Sogoyan, A.V., Smolin, A.A., Ulanova, A.V., Gorbunov, M.S., Chumakov, A.I., and Boychenko, D.V., Temperature dependence of MCU sensitivity in 65 nm CMOS SRAM, IEEE Trans. Nucl. Sci., 2015, vol. 62, no. 6, pp. 2860–2866.

    Article  Google Scholar 

  22. Garg, R. and Khatri, S.P., Analysis and Design of Resilient VLSI Circuits: Mitigating Soft Errors and Process Variations, New York: Springer, 2010, pp. 194–205.

    Book  Google Scholar 

  23. Soft Errors in Modern Electronic Systems, Nicolaidis, M., Ed., New York: Springer, 2011, pp. 35–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Katunin.

Additional information

Original Russian Text © Yu.V. Katunin, V.Ya. Stenin, 2018, published in Mikroelektronika, 2018, Vol. 47, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katunin, Y.V., Stenin, V.Y. The Element of Matching on an STG DICE Cell for an Upset Tolerant Content Addressable Memory. Russ Microelectron 47, 142–156 (2018). https://doi.org/10.1134/S1063739718020051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718020051

Navigation