Skip to main content
Log in

Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N2H4) or ammonia (NH3). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH3) at temperatures from 150 to 225°C were self-limiting. The rates of deposition of the nitride film at 200°C for systems with N2H4 and NH3 coincided: ~1.1 Å/cycle. The ALD AlN films obtained at 200°C using hydrazine had higher density (2.36 g/cm3, 72.4% of bulk density) than those obtained with ammonia (2.22 g/cm3, 68%). The elemental analysis of the film deposited using TDEAA/N2H4 at 200°C showed the presence of carbon (~1.4 at %), oxygen (~3.2 at %), and hydrogen (22.6 at %) impurities. The N/Al atomic concentration ratio was ~1.3. The residual impurity content in the case of N2H4 was lower than for NH3. In general, it was confirmed that hydrazine has a more preferable surface thermochemistry than ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slack, G.A., et al., The intrinsic thermal-conductivity of AlN, J. Phys. Chem. Solids, 1987, vol. 48, no. 7, pp. 641–647.

    Article  Google Scholar 

  2. Goldberg, Y., Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S., New York: Wiley, 2001.

  3. Meng, W.J., Properties of Group III Nitrides, No. 11 of EMIS Datareviews Series, London: Edgar J.H., 1994.

    Google Scholar 

  4. Aita, C.R., Kubiak, C.J.G., and Shih, F.Y.H., Optical behavior near the fundamental absorption-edge of sputter-deposited microcrystalline aluminum nitride, J. Appl. Phys., 1989, vol. 66, no. 9, pp. 4360–4363.

    Article  Google Scholar 

  5. Edwards, J. et al., Space charge conduction and electrical behaviour of aluminium nitride single crystals, Solid State Commun., 1965, vol. 3, no. 5, pp. 99–100.

    Article  Google Scholar 

  6. Usman, M. et al., Toward the understanding of stacked Al-based high-k dielectrics for passivation of 4H-SiC devices, J. Electrochem. Soc., 2011, vol. 158, no. 1, pp. H75–H79.

    Article  MathSciNet  Google Scholar 

  7. Bosund, M. et al., GaAs surface passivation by plasmaenhanced atomic-layer-deposited aluminum nitride, Appl. Surf. Sci., 2010, vol. 256, no. 24, pp. 7434–7437.

    Article  Google Scholar 

  8. Kueck, D. et al., AlN as passivation for surface channel FETs on H-terminated diamond, Diamond Relat. Mater., 2010, vol. 19, nos. 7–9, pp. 932–935.

    Article  Google Scholar 

  9. Luc, Q.H. et al., Plasma enhanced atomic layer deposition passivated HfO2/AlN/In0.53Ga0.47As MOSCAPs with sub-nanometer equivalent oxide thickness and low interface trap density, IEEE Electron Dev. Lett., 2015, vol. 36, no. 12, pp. 1277–1280.

    Article  Google Scholar 

  10. Aissa, K.A. et al., AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications, J. Phys. D: Appl. Phys., 2015, vol. 48, no. 14.

    Google Scholar 

  11. Yusoff, M.Z.M. et al., Plasma-assisted MBE growth of AlN/GaN/AlN heterostructures on Si(111) substrate, Superlatt. Microstruct., 2013, vol. 60, pp. 500–507.

    Article  Google Scholar 

  12. Brubaker, M.D. et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, J. Appl. Phys., 2011, vol. 110, no. 5.

    Google Scholar 

  13. Hoffman, D.M. et al., Chemical vapor deposition of aluminum and gallium nitride thin films from metalorganic precursors, J. Vacuum Sci. Technol. A, 1996, vol. 14, no. 2, pp. 306–311.

    Article  Google Scholar 

  14. Khan, M.A. et al., Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates, Appl. Phys. Lett., 1992, vol. 61, no. 21, pp. 2539–2541.

    Article  MathSciNet  Google Scholar 

  15. Interrante, L.V. et al., Preparation and properties of aluminum nitride films using an organometallic precursor, J. Electrochem. Soc., 1989, vol. 136, no. 2, pp. 472–478.

    Article  Google Scholar 

  16. Gordon, R.G., Riaz, U., and Hoffman, D.M., Chemical vapor-deposition of aluminum nitride thin-films, J. Mater. Res., 1992, vol. 7, no. 7, pp. 1679–1684.

    Article  Google Scholar 

  17. Fathimulla, A. and Lakhani, A.A., Reactively Rf magnetron sputtered ain films as gate dielectric, J. Appl. Phys., 1983, vol. 54, no. 8, pp. 4586–4589.

    Article  Google Scholar 

  18. Mirpuri, C. et al., Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN, J. Appl. Phys., 2007, vol. 101, no. 2.

    Google Scholar 

  19. Rosenberger, L. et al., XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surf. Interface Anal., 2008, vol. 40, no. 9, pp. 1254–1261.

    Article  Google Scholar 

  20. Gacevic, Z. et al., Internal quantum efficiency of IIInitride quantum dot superlattices grown by plasmaassisted molecular-beam epitaxy, J. Appl. Phys., 2011, vol. 109, no. 10.

    Google Scholar 

  21. George, S.M., Atomic layer deposition: an overview, Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131.

    Article  Google Scholar 

  22. Ruhela, D. et al., Low temperature deposition of AlN films by an alternate supply of trimethyl aluminum and ammonia, Chem. Vapor Deposit., 1996, vol. 2, no. 6, pp. 277–283.

    Article  Google Scholar 

  23. Mayer, T.M., Rogers, J.W., and Michalske, T.A., Mechanism of nucleation and atomic layer growth of AlN on Si, Chem. Mater., 1991, vol. 3, no. 4, pp. 641–646.

    Article  Google Scholar 

  24. Liu, H., Bertolet, D.C., and Rogers, J.W., Reactions of trimethylaluminum and ammonia on alumina at 600-K, surface chemical aspects of AlN thin-film growth, Surf. Sci., 1995, vol. 340, nos. 1–2, pp. 88–100.

    Article  Google Scholar 

  25. Bui, H.V. et al., Self-limiting growth and thickness-and temperature-dependence of optical constants of ALD AlN thin films, ECS J. Solid State Sci. Technol., 2014, vol. 3, no. 4, pp. P101–P106.

    Article  Google Scholar 

  26. Liu, X.Y. et al., Atomic layer deposition of aluminum nitride thin films from trimethyl aluminum (TMA) and ammonia, in Integration of Advanced Micro-and Nanoeletronic Devices—Critical Issues and Solutions, Proceedings of the Symposia, San Francisco, CA, April 13–16, 2004, MRS Symp. Proc., 2004, vol. 811, pp. 11–16.

    Google Scholar 

  27. Elers, K.E. et al., Atomic layer epitaxy growth of AlN thin-films, J. Phys. IV, 1995, vol. 5, no. C5, pp. 1021–1027.

    Google Scholar 

  28. Jokinen, J. et al., Analysis of AlN thin films by combining TOF-ERDA and NRB techniques, Thin Solid Films, 1996, vol. 289, nos. 1–2, pp. 159–165.

    Article  Google Scholar 

  29. Puurunen, R.L. et al., Successive reactions of gaseous trimethylaluminium and ammonia on porous alumina, Phys. Chem. Chem. Phys., 2001, vol. 3, no. 6, pp. 1093–1102.

    Article  Google Scholar 

  30. Alevli, M., Ozgit, C., and Donmez, I., The influence of growth temperature on the properties of AlN films grown by atomic layer deposition, Acta Phys. Polon. A, 2011, vol. 120, no. 6A, pp. A58–A60.

    Article  Google Scholar 

  31. Lee, Y.J. and Kang, S.W., Growth of aluminum nitride thin films prepared by plasma-enhanced atomic layer deposition, Thin Solid Films, 2004, vol. 446, no. 2, pp. 227–231.

    Article  Google Scholar 

  32. Lee, Y.J., Formation of aluminum nitride thin films as gate dielectrics on Si(100), J. Cryst. Growth, 2004, vol. 266, no. 4, pp. 568–572.

    Article  Google Scholar 

  33. Ozgit, C. et al., Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition, Thin Solid Films, 2012, vol. 520, no. 7, pp. 2750–2755.

    Article  Google Scholar 

  34. Ozgit-Akgun, C. et al., Hollow cathode plasmaassisted atomic layer deposition of crystalline AlN, GaN and AlxGa1–xN thin films at low temperatures, J. Mater. Chem. C, 2014, vol. 2, no. 12, pp. 2123–2136.

    Google Scholar 

  35. Alevli, M. et al., Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures, Phys. Status Solidi A, 2012, vol. 209, no. 2, pp. 266–271.

    Article  Google Scholar 

  36. Goerke, S. et al., Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H-2/N-2 plasma, Appl. Surf. Sci., 2015, vol. 338, pp. 35–41.

    Article  Google Scholar 

  37. Alevli, M., et al., The influence of N-2/H-2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition, J. Cryst. Growth, 2011, vol. 335, no. 1, pp. 51–57.

    Article  Google Scholar 

  38. Motamedi, P. and Cadien, K., Structural and optical characterization of low-temperature ALD crystalline AlN, J. Cryst. Growth, 2015, vol. 421, pp. 45–52.

    Article  Google Scholar 

  39. Profijt, H.B. et al., Plasma-assisted atomic layer deposition: basics, opportunities, and challenges, J. Vacuum Sci. Technol. A, 2011, vol. 29, no. 5.

    Google Scholar 

  40. Kim, K.H. et al., Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-kappa oxide/tungsten nitride gate stacks, Appl. Phys. Lett., 2007, vol. 90, no. 21.

    Google Scholar 

  41. Liu, G. et al., Atomic layer deposition of AlN with tris(dimethylamido)aluminum and NH3, in Proceedings of the 7th Symposium on Atomic Layer Deposition Applications, Boston, MA, Oct. 10–12, 2011, ECS Trans., 2011, vol. 41, no. 2, pp. 219–225.

    Google Scholar 

  42. Burton, B.B., Lavoie, A.R., and George, S.M., Tantalum nitride atomic layer deposition using (tert-butylimido) tris(diethylamido) tantalum and hydrazine, J. Electrochem. Soc., 2008, vol. 155, no. 7, pp. D508–D516.

    Article  Google Scholar 

  43. Gaskill, D.K., Bottka, N., and Lin, M.C., OMVPE of GaN and AlN films by metal alkyls and hydrazine, J. Cryst. Growth, 1986, vol. 77, nos. 1–3, pp. 418–423.

    Article  Google Scholar 

  44. Yun, J.Y., Park, M.Y., and Rhee, S.W., Comparison of tetrakis(dimethylamido)titanium and tetrakis(diethylamido) titanium as precursors for metallorganic chemical vapor deposition of titanium nitride, J. Electrochem. Soc., 1999, vol. 146, no. 5, pp. 1804–1808.

    Article  Google Scholar 

  45. Schmidt, E.W., Hydrazine and Its Derivatives, Preparation, Properties, Applications, New York: Wiley, 2001.

    Google Scholar 

  46. Elam, J.W., Groner, M.D., and George, S.M., Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, Rev. Sci. Instrum., 2002, vol. 73, no. 8, pp. 2981–2987.

    Article  Google Scholar 

  47. Neumayer, D.A. and Ekerdt, J.G., Growth of group III nitrides. A review of precursors and techniques, Chem. Mater., 1996, vol. 8, no. 1, p. 9–25.

    Article  Google Scholar 

  48. Rocklein, M.N. and George, S.M., Temperatureinduced apparent mass changes observed during quartz crystal microbalance measurements of atomic layer deposition, Anal. Chem., 2003, vol. 75, no. 19, pp. 4975–4982.

    Article  Google Scholar 

  49. Takahashi, Y. et al., Low-temperature deposition of a refractory aluminum compound by the thermaldecomposition of aluminum dialkylamides, Surf. Sci., 1979, vol. 86, pp. 238–245.

    Article  Google Scholar 

  50. Holtz, M. et al., Preparation of optoelectronic devices based on AlN/AlGaN superlattices, in Progress in Semiconductors II, Electronic and Optoelectronic Applications, MRS Symp. Proc., 2003, vol. 744, pp. 621–626.

    Google Scholar 

  51. Bertolet, D.C., Liu, H., and Rogers, J.W., Mechanistics of early-stage growth of AlN on Alumina. 2. TmAl and NH3, Chem. Mater., 1993, vol. 5, no. 12, pp. 1814–1818.

    Article  Google Scholar 

  52. Buttera, S.C., Mandia, D.J., and Barry, S.T., Tris(dimethylamido) aluminum(III): an overlooked atomic layer deposition precursor, J. Vacuum Sci. Technol. A, 2017, vol. 35, no. 1.

    Google Scholar 

  53. Perros, A.P. et al., Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 50.

    Google Scholar 

  54. Bosund, M. et al., Properties of AlN grown by plasma enhanced atomic layer deposition, Appl. Surf. Sci., 2011, vol. 257, no. 17, pp. 7827–7830.

    Article  Google Scholar 

  55. Kim, K.H., Kwak, N.W., and Lee, S.H., Fabrication and properties of AlN film on GaN substrate by using remote plasma atomic layer deposition method, Electron. Mater. Lett., 2009, vol. 5, no. 2, pp. 83–86.

    Article  Google Scholar 

  56. Broas, M. et al., Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films, J. Vacuum Sci. Technol. A, 2016, vol. 34, no. 4.

    Google Scholar 

  57. The CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., 88th ed., Gaithersburg, MD: Natl. Inst. Standards Technol., 2007, p. 2640.

  58. Abdulagatov, A.I. et al., Atomic layer deposition of AlN and AlON with tris(dimethylamido)aluminum, NH3 and H2O, 2017, in preparation.

    Google Scholar 

  59. Nepal, N. et al., Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy, Appl. Phys. Lett., 2013, vol. 103, no. 8.

    Google Scholar 

  60. Ozgit-Akgun, C., Donmez, I., and Biyikli, N., Plasmaenhanced atomic layer deposition of III-nitride thin films, in Proceedings of the 9th Symposium on Atomic Layer Deposition Applications, ECS Trans., 2013, vol. 58, no. 10, pp. 289–297.

    Article  Google Scholar 

  61. Kelly, R., Attempt to understand preferential sputtering, Nucl. Instrum. Methods Phys. Res., 1978, vol. 149, nos. 1–3, pp. 553–558.

    Article  Google Scholar 

  62. Sigmund, P., Mechanisms and theory of physical sputtering by particle impact, Nucl. Instrum. Methods Phys. Res. B, 1987, vol. 27, no. 1, pp. 1–20.

    Article  Google Scholar 

  63. Liu, H.N., Bertolet, D.C., and Rogers, J.W., The surface-chemistry of aluminum nitride MOCVD on alumina using trimethylaluminum and ammonia as precursors, Surf. Sci., 1994, vol. 320, nos. 1–2, pp. 145–160.

    Article  Google Scholar 

  64. Fonash, S.J., An overview of dry etching damage and contamination effects, J. Electrochem. Soc., 1990, vol. 137, no. 12, pp. 3885–3892.

    Article  Google Scholar 

  65. Soto, C., Boiadjiev, V., and Tysoe, W.T., Spectroscopic study of AlN film formation by the sequential reaction of ammonia and trimethylaluminum on alumina, Chem. Mater., 1996, vol. 8, no. 9, pp. 2359–2365.

    Article  Google Scholar 

  66. Hoffman, D.M., Chemical-vapor-deposition of nitride thin-films, Polyhedron, 1994, vol. 13, no. 8, pp. 1169–1179.

    Article  Google Scholar 

  67. Cho, M.H. et al., Enhancement of the chemical stability of hydrogenated aluminum nitride thin films by nitrogen plasma treatment, Electrochem. Solid State Lett., 2001, vol. 4, no. 2, pp. F7–F9.

    Article  Google Scholar 

  68. Shih, H.Y. et al., Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing, Sci. Rep., 2017, vol. 7, p. 39717.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Additional information

Original Russian Text © A.I. Abdulagatov, Sh.M. Ramazanov, R.S. Dallaev, E.K. Murliev, D.K. Palchaev, M.Kh. Rabadanov, I.M. Abdulagatov, 2018, published in Mikroelektronika, 2018, Vol. 47, No. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, A.I., Ramazanov, S.M., Dallaev, R.S. et al. Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia. Russ Microelectron 47, 118–130 (2018). https://doi.org/10.1134/S1063739718020026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718020026

Navigation