Russian Microelectronics

, Volume 46, Issue 6, pp 379–389 | Cite as

Single-Photon Response and Spectroscopy of a Photonic Molecule Based on Diamond Microrings

Article

Abstract

The optical properties of a photonic molecule consisting of three diamond microring cavities are theoretically investigated. The probability of single-photon excitation (optical response) of a photonic molecule by a weak laser field in the steady-state mode with regard to the dissipative effects is calculated using the model analogous to the tight binding approximation. It is shown that the spectrum can be fine tuned by depositing additional layers onto the photonic-molecule surface. The dependences of the wavelength of the mode corresponding to the zero-phonon optical transition in the NV center on the thickness of these layers and refractive index of their material are established. The NV center localized in the electromagnetic field antinode effectively interacts with the photonic molecule eigenmode, which can be observed as anticrossing points in the dependences of the optical response of the system on exciting laser and transition frequencies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, L. and Hu, E., Lasing from InGaAs quantum dots in an injection microdisk, Appl. Phys. Lett., 2003, vol. 82, p.319.CrossRefGoogle Scholar
  2. 2.
    Kiraz, A., Michler, P., Becher, C., Gayral, B., Imamoglu, A., Zhang, L., Hu, E., Schoenfeld, W.V., and Petroff, P.M., Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure, Appl. Phys. Lett., 2001, vol. 78, p. 3932.CrossRefGoogle Scholar
  3. 3.
    Ghosh, G., Wang, W.H., Mendoza, F.M., Myers, R.C., Li, X., Samarth, N., Gossard, A.C., and Awschalom, D.D., Enhancement of spin coherence using Q-factor engineering in semiconductors microdiscs, Nat. Mater., 2006, vol. 5, p.261.CrossRefGoogle Scholar
  4. 4.
    Gruber, A., Drabenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., and von Borczyskowski, C., Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science, 1997, vol. 276, p. 2012.CrossRefGoogle Scholar
  5. 5.
    Brouri, R., Beveratos, A., Poizat, J.-P., and Grangier, P., Photon antibunching in the fluorescence of individual color centers in diamond, Opt. Lett., 2000, vol. 25, p. 1294.CrossRefGoogle Scholar
  6. 6.
    Kurtsiefer, C., Mayer, S., Zarda, P., and Weinfurter, H., Stable solid-state source of single photons, Phys. Rev. Lett., 2000, vol. 85, p.290.CrossRefGoogle Scholar
  7. 7.
    Kennedy, T.A., Colton, J.S., Butler, J.E., Linares, R.C., and Doering, P.J., Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition, Appl. Phys. Lett., 2003, vol. 83, p. 4190.CrossRefGoogle Scholar
  8. 8.
    Meijer, J., Burchard, B., Domhan, M., Wittmann, C., Gaebel, T., Popa, I., Jelezko, F., and Wrachtrup, J., Generation of single color centers by focused nitrogen implantation, Appl. Phys. Lett., 2005, vol. 87, p. 261909.CrossRefGoogle Scholar
  9. 9.
    Greentree, A.D., Olivero, P., Draganski, M., Trajkov, E., Rabeau, J.R., Reichart, P., Gibson, B.C., Rubanov, S., Huntington, S.T., Jamieson, D.N., and Prawer, S., Critical components for diamond-based quantum coherent devices, J. Phys.: Condens. Matter., 2006, vol. 18, p. S825.Google Scholar
  10. 10.
    Tsukanov, A.V., NV-centers in diamond. Part I. General information, fabrication technology, and the structure of the spectrum, Russ. Microelectron., 2012, vol. 41, no. 2, pp. 91–106.Google Scholar
  11. 11.
    Tsukanov, A.V., NV-centers in diamond. Part II. Spectroscopy, spin-state identification, and quantum manipulation, Russ. Microelectron., 2012, vol. 41, no. 3, pp. 145–161.Google Scholar
  12. 12.
    Tsukanov, A.V., NV centers in diamond. Part III: Quantum algorithms, scaling, and hybrid systems, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 1–15.CrossRefGoogle Scholar
  13. 13.
    Yariv, A., Xu, Y., Lee, R.K., and Scherer, A., Coupledresonator optical waveguide: a proposal and analysis, Opt. Lett., 1999, vol. 24, p.711.CrossRefGoogle Scholar
  14. 14.
    Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics. Part I, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 325–346.CrossRefGoogle Scholar
  15. 15.
    Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics Part II, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 165–180.CrossRefGoogle Scholar
  16. 16.
    Tsukanov, A.V., Kateev, I.Y., and Orlikovsky, A.A., Quantum register based on structured diamond waveguide with NV centers, Proc. SPIE, 2012, vol. 8700, p. 87001F.CrossRefGoogle Scholar
  17. 17.
    Acosta, V.M., Santori, C., Faraon, A., Huang, Z., Fu, K.-M.C., Stacey, A., Simpson, D.A., Ganesan, K., Tomljenovic-Hanic, S., Greentree, A.D., Prawer, S., and Beausoleil, R.G., Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond, Phys. Rev. Lett., 2012, vol. 108, p. 206401.CrossRefGoogle Scholar
  18. 18.
    Tamarat, Ph., Gaebel, T., Rabeau, J.R., Khan, M., Greentree, A.D., Wilson, H., Hollenberg, L.C.L., Prawer, S., Hemmer, P., Jelezko, F., and Wrachtrup, J., Stark shift control of single optical centers in diamond, Phys. Rev. Lett., 2006, vol. 97, p. 083002.CrossRefGoogle Scholar
  19. 19.
    Tsukanov, A.V., Kateev, I.Y., Orlikovsky, N.A., and Orlikovsky, A.A., Quantum diamond chip under network optical control, Proc. SPIE, 2015, vol. 9440, p. 94401G.Google Scholar
  20. 20.
    Tsukanov, A.V. and Kateev, I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part I, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 315–327.CrossRefGoogle Scholar
  21. 21.
    Tsukanov, A.V., Simulation of the spectroscopic response of photonic isomers with NV centers. Part I, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 211–224.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Tsukanov
    • 1
  • M. S. Rogachev
    • 1
  • I. Yu. Kateev
    • 1
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations