Skip to main content
Log in

Single-Photon Response and Spectroscopy of a Photonic Molecule Based on Diamond Microrings

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The optical properties of a photonic molecule consisting of three diamond microring cavities are theoretically investigated. The probability of single-photon excitation (optical response) of a photonic molecule by a weak laser field in the steady-state mode with regard to the dissipative effects is calculated using the model analogous to the tight binding approximation. It is shown that the spectrum can be fine tuned by depositing additional layers onto the photonic-molecule surface. The dependences of the wavelength of the mode corresponding to the zero-phonon optical transition in the NV center on the thickness of these layers and refractive index of their material are established. The NV center localized in the electromagnetic field antinode effectively interacts with the photonic molecule eigenmode, which can be observed as anticrossing points in the dependences of the optical response of the system on exciting laser and transition frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L. and Hu, E., Lasing from InGaAs quantum dots in an injection microdisk, Appl. Phys. Lett., 2003, vol. 82, p.319.

    Article  Google Scholar 

  2. Kiraz, A., Michler, P., Becher, C., Gayral, B., Imamoglu, A., Zhang, L., Hu, E., Schoenfeld, W.V., and Petroff, P.M., Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure, Appl. Phys. Lett., 2001, vol. 78, p. 3932.

    Article  Google Scholar 

  3. Ghosh, G., Wang, W.H., Mendoza, F.M., Myers, R.C., Li, X., Samarth, N., Gossard, A.C., and Awschalom, D.D., Enhancement of spin coherence using Q-factor engineering in semiconductors microdiscs, Nat. Mater., 2006, vol. 5, p.261.

    Article  Google Scholar 

  4. Gruber, A., Drabenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., and von Borczyskowski, C., Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science, 1997, vol. 276, p. 2012.

    Article  Google Scholar 

  5. Brouri, R., Beveratos, A., Poizat, J.-P., and Grangier, P., Photon antibunching in the fluorescence of individual color centers in diamond, Opt. Lett., 2000, vol. 25, p. 1294.

    Article  Google Scholar 

  6. Kurtsiefer, C., Mayer, S., Zarda, P., and Weinfurter, H., Stable solid-state source of single photons, Phys. Rev. Lett., 2000, vol. 85, p.290.

    Article  Google Scholar 

  7. Kennedy, T.A., Colton, J.S., Butler, J.E., Linares, R.C., and Doering, P.J., Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition, Appl. Phys. Lett., 2003, vol. 83, p. 4190.

    Article  Google Scholar 

  8. Meijer, J., Burchard, B., Domhan, M., Wittmann, C., Gaebel, T., Popa, I., Jelezko, F., and Wrachtrup, J., Generation of single color centers by focused nitrogen implantation, Appl. Phys. Lett., 2005, vol. 87, p. 261909.

    Article  Google Scholar 

  9. Greentree, A.D., Olivero, P., Draganski, M., Trajkov, E., Rabeau, J.R., Reichart, P., Gibson, B.C., Rubanov, S., Huntington, S.T., Jamieson, D.N., and Prawer, S., Critical components for diamond-based quantum coherent devices, J. Phys.: Condens. Matter., 2006, vol. 18, p. S825.

    Google Scholar 

  10. Tsukanov, A.V., NV-centers in diamond. Part I. General information, fabrication technology, and the structure of the spectrum, Russ. Microelectron., 2012, vol. 41, no. 2, pp. 91–106.

    Google Scholar 

  11. Tsukanov, A.V., NV-centers in diamond. Part II. Spectroscopy, spin-state identification, and quantum manipulation, Russ. Microelectron., 2012, vol. 41, no. 3, pp. 145–161.

    Google Scholar 

  12. Tsukanov, A.V., NV centers in diamond. Part III: Quantum algorithms, scaling, and hybrid systems, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 1–15.

    Article  Google Scholar 

  13. Yariv, A., Xu, Y., Lee, R.K., and Scherer, A., Coupledresonator optical waveguide: a proposal and analysis, Opt. Lett., 1999, vol. 24, p.711.

    Article  Google Scholar 

  14. Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics. Part I, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 325–346.

    Article  Google Scholar 

  15. Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics Part II, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 165–180.

    Article  Google Scholar 

  16. Tsukanov, A.V., Kateev, I.Y., and Orlikovsky, A.A., Quantum register based on structured diamond waveguide with NV centers, Proc. SPIE, 2012, vol. 8700, p. 87001F.

    Article  Google Scholar 

  17. Acosta, V.M., Santori, C., Faraon, A., Huang, Z., Fu, K.-M.C., Stacey, A., Simpson, D.A., Ganesan, K., Tomljenovic-Hanic, S., Greentree, A.D., Prawer, S., and Beausoleil, R.G., Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond, Phys. Rev. Lett., 2012, vol. 108, p. 206401.

    Article  Google Scholar 

  18. Tamarat, Ph., Gaebel, T., Rabeau, J.R., Khan, M., Greentree, A.D., Wilson, H., Hollenberg, L.C.L., Prawer, S., Hemmer, P., Jelezko, F., and Wrachtrup, J., Stark shift control of single optical centers in diamond, Phys. Rev. Lett., 2006, vol. 97, p. 083002.

    Article  Google Scholar 

  19. Tsukanov, A.V., Kateev, I.Y., Orlikovsky, N.A., and Orlikovsky, A.A., Quantum diamond chip under network optical control, Proc. SPIE, 2015, vol. 9440, p. 94401G.

    Google Scholar 

  20. Tsukanov, A.V. and Kateev, I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part I, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 315–327.

    Article  Google Scholar 

  21. Tsukanov, A.V., Simulation of the spectroscopic response of photonic isomers with NV centers. Part I, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 211–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsukanov.

Additional information

Original Russian Text © A.V. Tsukanov, M.S. Rogachev, I.Yu. Kateev, 2017, published in Mikroelektronika, 2017, Vol. 46, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukanov, A.V., Rogachev, M.S. & Kateev, I.Y. Single-Photon Response and Spectroscopy of a Photonic Molecule Based on Diamond Microrings. Russ Microelectron 46, 379–389 (2017). https://doi.org/10.1134/S1063739717060087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739717060087

Navigation