Advertisement

Russian Microelectronics

, Volume 46, Issue 6, pp 396–403 | Cite as

The Use of Finite Element Modeling for Calculating the C-V Curve of Capacitor Mems Microphone

  • D. M. Grigor’ev
  • I. V. Godovitsyn
  • V. V. Amelichev
  • S. S. Generalov
  • S. A. Polomoshnov
Article

Abstract

The C-V curve is an important characteristic of a MEMS microphone as it determines its operating voltage and sensitivity. Due to the complicated geometry of its fixed perforated backplate and thin movable diaphragm, it requires finite element modeling to calculate the C-V curve. Various methods to solve this problem are considered in this work, and implementation of the iterative calculation method using the ANSYS software package is proposed. The results obtained using the iterative method and the two calculating methods of electrostatic interaction built into the ANSYS software are compared and analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, P., MEMS Microphone Market to Hit 13% CAGR. http://www.eetimes.com/document.asp?doc_ id=1328892. Accessed March 9, 2017.Google Scholar
  2. 2.
    Makushin, M.V., Two main trends in the development of the world market for MEMS microphones, Ekspress-Inform. Zarubezh. Elektron. Tekh., 2016, no. 3 (6591), pp. 7–8.Google Scholar
  3. 3.
    Godovitsyn, I.V., Generalov, S.S., Polomoshnov, S.A., Syvorotkin, P.A., and Amelichev, V.V., Integrated condenser acoustic pressure transducer for a miniature MEMS-microphone, Nano-Mikrosist.Tekh., 2014, no. 4, pp. 43–50.Google Scholar
  4. 4.
    Gallagher, R.H., Finite Element Analysis: Fundamentals, Prentice-Hall Civil Engineering and Engineering Mechanics Series, Englewood Cliffs: Prentice-Hall, 1975.Google Scholar
  5. 5.
    MEMS Solutions Overview, MEMS+ Overview: MEMS Simulation Software, Coventor Ware, Microphone Design and Simulation, Hybrid BEM/FEM Coupled Electromechanics. http://www.coventor.com/. Accessed March 9, 2017.Google Scholar
  6. 6.
    Amelichev, V.V. and Il’kov, A.V., Konstruktivno-tekhnologicheskii bazis sozdaniya elektroakusticheskikh preobrazovatelei (Construction-Technological Basis for Electroacoustic Transduser Creation), Moscow: Tekhnosfera, 2012.Google Scholar
  7. 7.
    Structural Mechanics Module. Software for Performing Structural Mechanics Analyses. http://www.comsol. com/structural-mechanics-module. Accessed March 9, 2017.Google Scholar
  8. 8.
    ANSYS Parametric Design Language Guide, Canonsburg: ANSYS Inc., 2013.Google Scholar
  9. 9.
    Jafari, R. and Kirk, A.G., Comparison of three ANSYS finite element tools for analysis of MEMS micromirrors, J. Micro/Nanolithog., MEMS, MOEMS, 2007, vol. 6, no. 2, pp. 1–7.Google Scholar
  10. 10.
    Senturia, S.D., Microsystem Design, Boston: Kluwer Academic, 2001.Google Scholar
  11. 11.
    Wang, Y.T. et al., The fringe-capacitance of etching holes for CMOS-MEMS, Micromachines, 2015, vol. 6, no. 11, pp. 1617–1628.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. M. Grigor’ev
    • 1
  • I. V. Godovitsyn
    • 1
  • V. V. Amelichev
    • 1
  • S. S. Generalov
    • 1
  • S. A. Polomoshnov
    • 1
  1. 1.Scientific-Manufacturing Complex Technological Center MIETMoscowRussia

Personalised recommendations