Skip to main content
Log in

Total Efficiency of the Optical-to-Terahertz Conversion in Photoconductive Antennas Based on LT-GaAs and In0.38Ga0.62As

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The total efficiency of the optical-terahertz conversion ηtotal in photoconductive antennas (PCAs) on the basis of different materials (LT-GaAs and In0.38Ga0.62As) under optical laser excitation at wavelengths of 800 and 1030 nm is studied. It is shown that the photoconductive material factor μτ2 has a significant impact on the magnitude of the THz photocurrent and the value of ηtotal. With the use of electromagnetic modeling, the processes of heat transfer are studied and the power of Joule heating in these PCAs is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burford, N.M. and El-Shenawee, M.O., Review of terahertz photoconductive antenna technology, Opt. Eng., 2017, vol. 56, no. 1, p. 010901.

    Article  Google Scholar 

  2. Yardimci, N.T. and Jarrahi, M., High sensitivity terahertz detection through plasmonic nano-antenna arrays, Sci. Rep., 2017, vol. 7, p. 42667.

    Article  Google Scholar 

  3. Ponomarev, D.S., Khabibullin, R.A., Yachmenev, A.E., Maltsev, P.P., Grekhov, M.M., Ilyakov, I.E., Shishkin, B.V., and Akhmedzhanov, R.A., Terahertz radiation in In0.38Ga0.62As grown on a GaAs wafer with a metamorphic buffer layer under femtosecond laser excitation, Semiconductors, 2017, vol. 51, no. 4, pp. 509–514.

    Article  Google Scholar 

  4. Smith, P.R., Auston, D.H., and Nuss, M.C., Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron., 1988, vol. 24, no. 2, pp. 255–260.

    Article  Google Scholar 

  5. Ponomarev, D.S., Khabibullin, R.A., Yachmenev, A.E., Maltsev, P.P., Ilyakov, I.E., Shiskin, B.V., and Akhmedzhanov, R.A., Intensive terahertz radiation from InxGa1–xAs due to photo-dember effect, IJHSES, 2016, vol. 25, nos. 3–4, p. 1640023.

    Google Scholar 

  6. Liu, T.A., Tani, M., and Pan, C.L., THz radiation emission properties of multienergy arsenic-ionimplanted GaAs and semi-insulating GaAs based photoconductive antennas, J. Appl. Phys., 2003, vol. 93, pp. 2996–3001.

    Article  Google Scholar 

  7. Klos, M., Bartholdt, R., Klier, J., Lampin, J.-F., and Beigang, R., Photoconductive antennas based on low temperature grown GaAs on silicon substrates for broadband terahertz generation and detection, Proc. of SPIE, 2016, vol. 9747, p. 974712-1.

    Article  Google Scholar 

  8. Preu, S., Mittendorff, M., Lu, H., Weber, H.B., Winnerl, S., and Gossard, A.C., 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters, Appl. Phys. Lett., 2012, vol. 101, p. 101105.

    Article  Google Scholar 

  9. Beck, M., Schäfer, H., Klatt, G., Demsar, J., Winnerl, S., Helm, M., and Dekorsy, T., Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna, Opt. Express, 2010, vol. 18, no. 9, pp. 9251–9257.

    Article  Google Scholar 

  10. Chimot, N., Mangeney, J., Mounaix, P., Tondusson, M., Blary, K., and Lampin, J.F., Terahertz radiation generated and detected by Br+-irradiated In0.53Ga0.47As photoconductive antenna excited at 800 nm wavelength, Appl. Phys. Lett., 2006, vol. 89, p. 083519.

    Article  Google Scholar 

  11. Yang, S.-H., Hashemi, M.R., Berry, C.W., and Jarrahi, M., 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes, IEEE Trans. Tera. Sci. Technol., 2014, vol. 4, pp. 575–581.

    Article  Google Scholar 

  12. Ponomarev, D.S., Khabibullin, R.A., Yachmenev, A.E., Pavlov, A.Yu., Slapovskii, D.N., Glinskiy, I.A., Lavrukhin, D.V., Ruban, O.A., and Mal’tsev, P.P., Electric and thermal properties of photoconductive antetta based on InxGa1–xAs (x > 0.3) with metamorphic buffer layer for terahertz radiation generation, Semiconductors, 2017, vol. 51, no. 9, pp. 1218–1223.

    Article  Google Scholar 

  13. Huang, Y., Khiabani, N., Shen, Y., and Li, D., Terahertz photoconductive antenna efficiency, in Proceedings of the International Workshop on Antenna Technology iWAT, Hong Kong, China, March 7–9, 2011, pp. 152–156.

  14. Ezdi, K., Islam, M.N., Reddy, Y., Jordens, C., Enders, A., and Koch, M., A numerical study of photoconductive dipole antennas: the real emission frequency and an improved antenna design, Proc. SPIE, 2006, vol. 6194, pp. 61940G–1–9.

    Article  Google Scholar 

  15. Lavrukhin, D.V., Yachmenev, A.E., Bugaev, A.S., Galiev, G.B., Klimov, E.A., Khabibullin, R.A., Ponomarev, D.S., and Maltsev, P.P., Investigation of the optical properties of GaAs with d-Si doping grown by molecular-beam epitaxy at low temperatures, Semiconductors, 2015, vol. 49, no. 7, pp. 911–914.

    Article  Google Scholar 

  16. Shahvarpour, A., Melcon, A.A., and Caloz, C., Radiation efficiency issues in planar antennas on electrically thick substrates and solutions, IEEE Trans. Anten. Propagat., 2013, vol. 61, no. 8, pp. 4013–4025.

    Article  Google Scholar 

  17. Kulbachinskii, V.A., Yuzeeva, N.A., Galiev, G.B., Klimov, E.A., Vasil’evskii, I.S., Khabibullin, R.A., and Ponomarev, D.S., Electron effective masses in an InGaAs quantum well with InAs and GaAs inserts, Semicond. Sci. Technol., 2012, vol. 27, no. 3, p. 035021.

    Article  Google Scholar 

  18. Harmon, E.S., Melloch, M.R., Woodall, J.M., Nolte, D.D., Otsuka, N., and Chang, C.L., Carrier lifetime vs. anneal in low growth temperature GaAs, Appl. Phys. Lett., 1993, vol. 63, no. 16, pp. 2248–2250.

    Article  Google Scholar 

  19. Glinskii, I.A. and Zenchenko, N.V., Computer simulation of the heat distribution element for high-power microwave transistors, Russ. Microelectron., 2015, vol. 44, no. 4, pp. 236–240.

    Article  Google Scholar 

  20. Collier, C.M., Stirling, T.J., Hristovski, I.R., Krupa, J.D.A., and Holzman, J.F., Photoconductive terahertz generation from textured semiconductor materials, Sci. Rep., 2016, vol. 6, p. 23185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Glinskiy.

Additional information

Original Russian Text © I.A. Glinskiy, R.A. Khabibullin, D.S. Ponomarev, 2017, published in Mikroelektronika, 2017, Vol. 46, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glinskiy, I.A., Khabibullin, R.A. & Ponomarev, D.S. Total Efficiency of the Optical-to-Terahertz Conversion in Photoconductive Antennas Based on LT-GaAs and In0.38Ga0.62As. Russ Microelectron 46, 408–413 (2017). https://doi.org/10.1134/S1063739717060051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739717060051

Navigation