Advertisement

Russian Microelectronics

, Volume 46, Issue 6, pp 408–413 | Cite as

Total Efficiency of the Optical-to-Terahertz Conversion in Photoconductive Antennas Based on LT-GaAs and In0.38Ga0.62As

  • I. A. Glinskiy
  • R. A. Khabibullin
  • D. S. Ponomarev
Article

Abstract

The total efficiency of the optical-terahertz conversion ηtotal in photoconductive antennas (PCAs) on the basis of different materials (LT-GaAs and In0.38Ga0.62As) under optical laser excitation at wavelengths of 800 and 1030 nm is studied. It is shown that the photoconductive material factor μτ2 has a significant impact on the magnitude of the THz photocurrent and the value of ηtotal. With the use of electromagnetic modeling, the processes of heat transfer are studied and the power of Joule heating in these PCAs is evaluated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burford, N.M. and El-Shenawee, M.O., Review of terahertz photoconductive antenna technology, Opt. Eng., 2017, vol. 56, no. 1, p. 010901.CrossRefGoogle Scholar
  2. 2.
    Yardimci, N.T. and Jarrahi, M., High sensitivity terahertz detection through plasmonic nano-antenna arrays, Sci. Rep., 2017, vol. 7, p. 42667.CrossRefGoogle Scholar
  3. 3.
    Ponomarev, D.S., Khabibullin, R.A., Yachmenev, A.E., Maltsev, P.P., Grekhov, M.M., Ilyakov, I.E., Shishkin, B.V., and Akhmedzhanov, R.A., Terahertz radiation in In0.38Ga0.62As grown on a GaAs wafer with a metamorphic buffer layer under femtosecond laser excitation, Semiconductors, 2017, vol. 51, no. 4, pp. 509–514.CrossRefGoogle Scholar
  4. 4.
    Smith, P.R., Auston, D.H., and Nuss, M.C., Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron., 1988, vol. 24, no. 2, pp. 255–260.CrossRefGoogle Scholar
  5. 5.
    Ponomarev, D.S., Khabibullin, R.A., Yachmenev, A.E., Maltsev, P.P., Ilyakov, I.E., Shiskin, B.V., and Akhmedzhanov, R.A., Intensive terahertz radiation from InxGa1–xAs due to photo-dember effect, IJHSES, 2016, vol. 25, nos. 3–4, p. 1640023.Google Scholar
  6. 6.
    Liu, T.A., Tani, M., and Pan, C.L., THz radiation emission properties of multienergy arsenic-ionimplanted GaAs and semi-insulating GaAs based photoconductive antennas, J. Appl. Phys., 2003, vol. 93, pp. 2996–3001.CrossRefGoogle Scholar
  7. 7.
    Klos, M., Bartholdt, R., Klier, J., Lampin, J.-F., and Beigang, R., Photoconductive antennas based on low temperature grown GaAs on silicon substrates for broadband terahertz generation and detection, Proc. of SPIE, 2016, vol. 9747, p. 974712-1.CrossRefGoogle Scholar
  8. 8.
    Preu, S., Mittendorff, M., Lu, H., Weber, H.B., Winnerl, S., and Gossard, A.C., 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters, Appl. Phys. Lett., 2012, vol. 101, p. 101105.CrossRefGoogle Scholar
  9. 9.
    Beck, M., Schäfer, H., Klatt, G., Demsar, J., Winnerl, S., Helm, M., and Dekorsy, T., Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna, Opt. Express, 2010, vol. 18, no. 9, pp. 9251–9257.CrossRefGoogle Scholar
  10. 10.
    Chimot, N., Mangeney, J., Mounaix, P., Tondusson, M., Blary, K., and Lampin, J.F., Terahertz radiation generated and detected by Br+-irradiated In0.53Ga0.47As photoconductive antenna excited at 800 nm wavelength, Appl. Phys. Lett., 2006, vol. 89, p. 083519.CrossRefGoogle Scholar
  11. 11.
    Yang, S.-H., Hashemi, M.R., Berry, C.W., and Jarrahi, M., 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes, IEEE Trans. Tera. Sci. Technol., 2014, vol. 4, pp. 575–581.CrossRefGoogle Scholar
  12. 12.
    Ponomarev, D.S., Khabibullin, R.A., Yachmenev, A.E., Pavlov, A.Yu., Slapovskii, D.N., Glinskiy, I.A., Lavrukhin, D.V., Ruban, O.A., and Mal’tsev, P.P., Electric and thermal properties of photoconductive antetta based on InxGa1–xAs (x > 0.3) with metamorphic buffer layer for terahertz radiation generation, Semiconductors, 2017, vol. 51, no. 9, pp. 1218–1223.CrossRefGoogle Scholar
  13. 13.
    Huang, Y., Khiabani, N., Shen, Y., and Li, D., Terahertz photoconductive antenna efficiency, in Proceedings of the International Workshop on Antenna Technology iWAT, Hong Kong, China, March 7–9, 2011, pp. 152–156.Google Scholar
  14. 14.
    Ezdi, K., Islam, M.N., Reddy, Y., Jordens, C., Enders, A., and Koch, M., A numerical study of photoconductive dipole antennas: the real emission frequency and an improved antenna design, Proc. SPIE, 2006, vol. 6194, pp. 61940G–1–9.CrossRefGoogle Scholar
  15. 15.
    Lavrukhin, D.V., Yachmenev, A.E., Bugaev, A.S., Galiev, G.B., Klimov, E.A., Khabibullin, R.A., Ponomarev, D.S., and Maltsev, P.P., Investigation of the optical properties of GaAs with d-Si doping grown by molecular-beam epitaxy at low temperatures, Semiconductors, 2015, vol. 49, no. 7, pp. 911–914.CrossRefGoogle Scholar
  16. 16.
    Shahvarpour, A., Melcon, A.A., and Caloz, C., Radiation efficiency issues in planar antennas on electrically thick substrates and solutions, IEEE Trans. Anten. Propagat., 2013, vol. 61, no. 8, pp. 4013–4025.CrossRefGoogle Scholar
  17. 17.
    Kulbachinskii, V.A., Yuzeeva, N.A., Galiev, G.B., Klimov, E.A., Vasil’evskii, I.S., Khabibullin, R.A., and Ponomarev, D.S., Electron effective masses in an InGaAs quantum well with InAs and GaAs inserts, Semicond. Sci. Technol., 2012, vol. 27, no. 3, p. 035021.CrossRefGoogle Scholar
  18. 18.
    Harmon, E.S., Melloch, M.R., Woodall, J.M., Nolte, D.D., Otsuka, N., and Chang, C.L., Carrier lifetime vs. anneal in low growth temperature GaAs, Appl. Phys. Lett., 1993, vol. 63, no. 16, pp. 2248–2250.CrossRefGoogle Scholar
  19. 19.
    Glinskii, I.A. and Zenchenko, N.V., Computer simulation of the heat distribution element for high-power microwave transistors, Russ. Microelectron., 2015, vol. 44, no. 4, pp. 236–240.CrossRefGoogle Scholar
  20. 20.
    Collier, C.M., Stirling, T.J., Hristovski, I.R., Krupa, J.D.A., and Holzman, J.F., Photoconductive terahertz generation from textured semiconductor materials, Sci. Rep., 2016, vol. 6, p. 23185.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Glinskiy
    • 1
    • 2
  • R. A. Khabibullin
    • 1
  • D. S. Ponomarev
    • 1
  1. 1.Institute of Ultra High Frequency Semiconductor Electronics of Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Technological University (MIREA)MoscowRussia

Personalised recommendations