Russian Microelectronics

, Volume 46, Issue 6, pp 371–378 | Cite as

Statistical Models and Adequacy Validation for Optical Quantum State Tomography with Quadrature Measurements

  • Yu. I. Bogdanov
  • N. A. Bogdanova
  • L. V. Belinsky
  • V. F. Lukichev


Mutually complementary quadrature quantum measurements are analyzed and a new method to formulate statistical models of quantum states is proposed. The method is based on the root approach to quantum measurements and includes a procedure for approximating quantum states with reduced finite dimensional models. The efficiency of the proposed approach is demonstrated using numerical experiments. This approach is aimed at achieving the highest possible precision in multiphoton quantum state tomography.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valiev, K.A. and Kokin, A.A., Kvantovye komp’yutery: nadezhda i real’nost’ (Quantum Computers: Hope and Reality), Izhevsk: RKhD, 2001.Google Scholar
  2. 2.
    Valiev, K.A., Quantum computers and quantum computation, Phys. Usp., 2014, vol. 57, no. 9, pp. 1–36.Google Scholar
  3. 3.
    Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000.MATHGoogle Scholar
  4. 4.
    Chen, G., Church, D.A., Englert, B.-G., et al., Quantum Computing Devices. Principles, Designs, and Analysis, Boca Raton, FL: Chapman Hall, CRC, 2007.MATHGoogle Scholar
  5. 5.
    Bogdanov, Yu.I., Valiev, K.A., and Kokin, A.A., Quantum computers: achievements, implementation difficulties, and prospects, Russ. Microelectron., 2011, vol. 40, no. 4, pp. 225–236.CrossRefGoogle Scholar
  6. 6.
    Bogdanov, Yu.I., Kokin, A.A., Lukichev, V.F., Orlikovskii, A.A., Semenikhin, I.A., and Chernyavskii, A.Yu., Quantum mechanics and development of information technologies, Inform. Tekhnol. Vychisl. Sist., 2012, no. 1, pp. 17–31.Google Scholar
  7. 7.
    Quantum Communications and Cryptography, Sergienko, A.V., Ed., London, New York: Taylor Francis Group, 2005.Google Scholar
  8. 8.
    Kholevo, A.S., Kvantovye sistemy, kanaly, informatsiya (Quantum Systems, Channels, Information), Moscow: MTsNMO, 2010.Google Scholar
  9. 9.
    Bengtsson, I. and Zyczkowski, K., Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge: Cambridge Univ. Press, 2006.CrossRefMATHGoogle Scholar
  10. 10.
    Bogdanov, A.Yu., Bogdanov, Yu.I., and Valiev, K.A., Schmidt information and entanglement of quantum systems, Moscow Univ. Comput. Math. Cybernet., 2014, vol. 31, no. 1, p. 33; arXiv: 0512062 [quant-ph].MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A., Experimental quantum teleportation, Nature, 1997, vol. 390, no. 6660, pp. 575–579.CrossRefMATHGoogle Scholar
  12. 12.
    James, D.F., Kwiat, P.G., Munro, W.J., and White, A.G., Measurement of qubits, Phys. Rev. A, 2001, vol. 64, p. 052312.CrossRefGoogle Scholar
  13. 13.
    Banaszek, K., D’Ariano, G.M., Paris, M.G.A., and Sacchi, M.F., Maximum-likelihood estimation of the density matrix, Phys. Rev. A, 2000, vol. 61, p. 010304.CrossRefGoogle Scholar
  14. 14.
    D’Ariano, G.M., Paris, M.G.A., and Sacchi, M.F., Parameters estimation in quantum optics, Phys. Rev. A, 2000, vol. 62, p. 023815.CrossRefGoogle Scholar
  15. 15.
    Allevi, A., Andreoni, A., Bondani, M., Brida, G., Genovese, M., Gramegna, M., Traina, P., Olivares, S., Paris, M.G.A., and Zambra, G., State reconstruction by on/off measurements, Phys. Rev. A, 2009, vol. 80, p. 022114.CrossRefGoogle Scholar
  16. 16.
    Bogdanov, Yu.I., Chekhova, M.V., Krivitsky, L.A., Kulik, S.P., Penin, A.N., Kwek, L.C., Zhukov, A.A., Oh, C.H., and Tey, M.K., Statistical reconstruction of qutrits, Phys. Rev. A, 2004, vol. 70, p. 042303.CrossRefGoogle Scholar
  17. 17.
    Bogdanov, Yu.I., Krivitskii, L.A., and Kulik, S.P., Statistical reconstruction of the quantum states of three level optical systems, JETP Lett., 2003, vol. 78, pp. 352–357.CrossRefGoogle Scholar
  18. 18.
    Bogdanov, Yu.I., Chekhova, M.V., Kulik, S.P., Maslennikov, G.A., Zhukov, A.A., Oh, C.H., and Tey, M.K., Qutrit state engineering with biphotons, Phys. Rev. Lett., 2004, vol. 93, p. 230503.CrossRefGoogle Scholar
  19. 19.
    Bogdanov, Yu.I., Moreva, E.V., Maslennikov, G.A., Galeev, R.F., Straupe, S.S., and Kulik, S.P., Polarization states of four-dimensional systems based on biphotons, Phys. Rev. A, 2006, vol. 73, p. 063810.CrossRefGoogle Scholar
  20. 20.
    Bogdanov, Yu.I., Kulik, S.P., Moreva, E.V., Tikhonov, I.V., and Gavrichenko, A.K., Optimization of a quantum tomography protocol for polarization qubits, JETP Lett., 2010, vol. 91, pp. 686–692.CrossRefMATHGoogle Scholar
  21. 21.
    D’Ariano, G.M., Mataloni, P., and Sacchi, M.F., Generating qudits with d = 3, 4 encoded on two-photon states, Phys. Rev. A, 2005, vol. 71, p. 062337.CrossRefGoogle Scholar
  22. 22.
    Rehacek, J., Englert, B.-G., and Kaszlikowski, D., Minimal qubit tomography, Phys. Rev. A, 2004, vol. 70, p. 052321.CrossRefGoogle Scholar
  23. 23.
    Ling, A., Soh, K.P., Lamas-Linares, A., and Kurtsiefer, C., Experimental polarization state tomography using optimal polarimeters, Phys. Rev. A, 2006, vol. 74, p. 022309.CrossRefGoogle Scholar
  24. 24.
    de Burgh, M.D., Langford, N.K., Doherty, A.C., and Gilchrist, A., Choice of measurement sets in qubit tomography, Phys. Rev. A, 2008, vol. 78, p. 052122.CrossRefGoogle Scholar
  25. 25.
    Asorey, M., Facchi, P., Man’ko, V.I., Marmo, G., Pascazio, S., and Sudarshan, E.C.G., Generalized tomographic maps, Phys. Rev. A, 2008, vol. 77, p. 042115.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Mikami, H. and Kobayashi, T., Remote preparation of qutrit states with biphotons, Phys. Rev. A, 2007, vol. 75, p. 022325.CrossRefGoogle Scholar
  27. 27.
    Lanyon, B.P., Weinhold, T.J., Langford, N.K., O’Brien, J.L., Resch, K.J., Gilchrist, A., and White, A.G., Manipulating biphotonic qutrits, Phys. Rev. Lett., 2008, vol. 100, p. 060504.CrossRefGoogle Scholar
  28. 28.
    Molina-Terriza, G., Torres, J.P., and Torner, L., Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum, Phys. Rev. Lett., 2001, vol. 88, no. 1, p. 013601.CrossRefGoogle Scholar
  29. 29.
    Peeters, W.H., Verstegen, E.J.K., and van Exter, M.P., Orbital angular momentum analysis of high-dimensional entanglement, Phys. Rev. A, 2007, vol. 76, no. 4, p. 042302.CrossRefGoogle Scholar
  30. 30.
    Di Lorenzo Pires, H., Florijn, H.C.B., and van Exter, M.P., Measurement of the spiral spectrum of entangled twophoton states, Phys. Rev. Lett., 2010, vol. 104, no. 2, p. 020505.CrossRefGoogle Scholar
  31. 31.
    Bobrov, I.B., Kovlakov, E.V., Markov, A.A., Straupe, S.S., and Kulik, S.P., Tomography of spatial mode detectors, Opt. Express, 2015, vol. 23, no. 2, pp. 649–654.CrossRefGoogle Scholar
  32. 32.
    Belinsky, A.V. and Klyshko, D.N., Two-photon wavepackets, Laser Phys., 1994, vol. 4, no. 4, pp. 663–689.Google Scholar
  33. 33.
    Chekhova, M.V., Ivanova, O.A., Berardi, V., and Garuccio, A., Spectral properties of three-photon entangled states generated via three-photon parametric down-conversion in a medium, Phys. Rev. A, 2005, vol. 72, no. 2, p. 023818.CrossRefGoogle Scholar
  34. 34.
    D’Angelo, M., Zavatta, A., Parigi, V., and Bellini, M., Tomographic test of Bell’s inequality for a time-delocalized single photon, Phys. Rev. A, 2006, vol. 74, no. 5, p. 052114.CrossRefGoogle Scholar
  35. 35.
    Bogdanov, Yu.I. and Kulik, S.P., The efficiency of quantum tomography based on photon detection, Laser Phys. Lett., 2013, vol. 10, no. 12, p. 125202.CrossRefGoogle Scholar
  36. 36.
    Bogdanov, Yu.I., Avosopyants, G.V., Belinskii, L.V., Katamadze, K.G., Kulik, S.P., and Lukichev, V.F., Statistical reconstruction of optical quantum states based on mutually complementary quadrature quantum measurements, J. Exp. Theor. Phys., 2016, vol. 123, no. 2, pp. 212–218.CrossRefGoogle Scholar
  37. 37.
    Bohr, N., Discussion with Einstein on epistemological problems in atomic physics, in Albert Einstein, Philosopher-Scientist, Schilp, P.A., Ed., Evanston, IL: Library of Living Philosophers, 1949, pp. 200–241.Google Scholar
  38. 38.
    Pauli, W., General Principles of Quantum Mechanics, Berlin, Heidelberg, New York: Springer, 1980.CrossRefGoogle Scholar
  39. 39.
    Yuen, H.P. and Chan, V.W.S., Noise in homodyne and heterodyne detection, Opt. Lett., 1983, vol. 8, no. 3, pp. 177–179.CrossRefGoogle Scholar
  40. 40.
    Schumaker, B.L., Noise in homodyne detection, Opt. Lett., 1984, vol. 9, no. 5, pp. 189–191.CrossRefGoogle Scholar
  41. 41.
    Vogel, K. and Risken, H., Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A, 1989, vol. 40, no. 5, pp. 2847–2849.CrossRefGoogle Scholar
  42. 42.
    Schleich, W.P., Quantum Optics in Phase Space, Berlin: Wiley-VCH, 2001.CrossRefMATHGoogle Scholar
  43. 43.
    D’Ariano, G.M., Paris, M.G.A., and Sacchi, M.F., Quantum tomography, Adv. Imaging Electron Phys., 2003, vol. 128, pp. 205–308, quant-ph/0302028.CrossRefGoogle Scholar
  44. 44.
    Lvovsky, A.I., Hansen, H., Aichele, T., Benson, O., Mlynek, J., and Schiller, S., Quantum state reconstruction of the single-photon Fock state, Phys. Rev. Lett., 2001, vol. 87, p. 050402.CrossRefGoogle Scholar
  45. 45.
    Zavatta, A., Viciani, S., and Bellini, M., Tomographic reconstruction of the single-photon Fock state by highfrequency homodyne detection, Phys. Rev. A, 2004, vol. 70, p. 053821.CrossRefGoogle Scholar
  46. 46.
    Lvovsky, A.I. and Raymer, M.G., Continuous-variable optical quantum-state tomography, Rev. Mod. Phys., 2009, vol. 81, pp. 299–332.CrossRefGoogle Scholar
  47. 47.
    Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., and Ventriglia, F., An introduction to the tomographic picture of quantum mechanics, Phys. Scr., 2009, vol. 79, p. 065013.CrossRefMATHGoogle Scholar
  48. 48.
    Quantum State Estimation, Paris, M. and Rehácek J., Eds., Vol. 649 of Lect. Notes Phys., Berlin, Heidelberg: Springer, 2004.Google Scholar
  49. 49.
    Focus on Quantum Tomography, Banaszek, K., Cramer, M., and Gross, D., Eds., New J. Phys., 2012–2013, vol. 15. on%20Quantum%20Tomography.Google Scholar
  50. 50.
    Bogdanov, Yu.I., Bogdanova, N.A., Katamadze, K.G., Avosopyants, G.V., and Lukichev, V.F., Study of photon statistics using a compound Poisson distribution and quadrature measurements, Optoelectron., Instrum. Data Process., 2016, vol. 52, no. 5, pp. 475–485.CrossRefGoogle Scholar
  51. 51.
    Bogdanov, Yu.I., Unified statistical method for reconstructing quantum states by purification, J. Exp. Theor. Phys., 2009, vol. 108, no. 6, pp. 928–935.CrossRefGoogle Scholar
  52. 52.
    Bogdanov, Yu.I., Brida, G., Genovese, M., Kulik, S.P., Moreva, E.V., and Shurupov, A.P., Statistical estimation of the efficiency of quantum state tomography protocols, Phys. Rev. Lett., 2010, vol. 105, p. 010404.CrossRefGoogle Scholar
  53. 53.
    Bogdanov, Yu.I., Brida, G., Bukeev, I.D., Genovese, M., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A., and Shurupov, A.P., Statistical estimation of quantum tomography protocols quality, Phys. Rev. A, 2011, vol. 84, p. 042108.CrossRefGoogle Scholar
  54. 54.
    Condon, E.U., Immersion of the fourier transform in a continuous group of functional transformations, Proc. Nat. Acad. Sci. USA, 1937, vol. 23, pp. 158–164.CrossRefMATHGoogle Scholar
  55. 55.
    Chountasis, S., Vourdas, A., and Bendjaballah, C., Fractional Fourier operators and generalized Wigner functions, Phys. Rev. A, 1999, vol. 60, no. 5, pp. 3467–3473.MathSciNetCrossRefGoogle Scholar
  56. 56.
    Borovkov, A.A., Matematicheskaya statistika (Mathematical Statistics), Moscow: Nauka, 1984; New York: Gordon and Breach, 1998.MATHGoogle Scholar
  57. 57.
    Cramer, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1946.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. I. Bogdanov
    • 1
    • 2
    • 3
  • N. A. Bogdanova
    • 1
    • 2
  • L. V. Belinsky
    • 1
    • 2
  • V. F. Lukichev
    • 1
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.National Research University of Electronic Technology MIET, ZelenogradMoscowRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations