Skip to main content
Log in

Identification and Characterization of a Novel Quadruple-Domain Galectin from the Hong Kong Oyster Crassostrea hongkongensis

  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Galectins, i.e. β-galactoside-binding animal lectins, play essential roles in the innate immunity systems of vertebrates and invertebrates. In the present study, a full-length cDNA coding for a galectin from the Hong Kong oyster Crassostrea hongkongensis (designated ChGal) was cloned and characterized. The complete cDNA of ChGal included an open reading frame (ORF) of 1668 bp, as well as 5′- and 3′-untranslated regions (UTRs) of 75 bp and 302 bp, respectively. The ORF coded for a putative protein of 555 amino acids with an estimated molecular mass of 63.4 kDa and a theoretical isoelectric point of 5.0. Sequence analysis revealed that ChGal contains four carbohydrate recognition domains (CRDs), each containing the conserved carbohydrate-binding motifs H-NPR and WG-ER. Phylogenetic analysis produced an unrooted tree with four clades: single CRDs, C-terminal CRDs with tandem-repeat galectin clade, N-terminal CRDs with tandem-repeat galectin clade, and quadruple-CRD clusters. ChGal clustered in the quadruple-domain galectins, which are divided into four subgroups on the basis of the position of each individual CRD. Recombinant ChGal exhibited strong agglutinating activity against Escherichia coli, Vibrio alginolyticus, and Bacillus thuringiensis. ChGal mRNA was constitutively expressed in all tissues tested, with the highest level detected in the digestive gland. The expression of ChGal significantly increased in haemocytes in response to V. alginolyticus challenge. These results suggest that ChGal play an important role in the innate immune responses of the Hong Kong oyster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cerliani, J.P., Stowell, S.R., Mascanfroni, I.D., et al., Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity, J. Clin. Immunol., 2011, vol. 31, pp. 10–21.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, J.H., Xiao, S., and Yu, Z.N., F-type lectin involved in defense against bacterial infection in the pearl oyster (Pinctada martensii), Fish Shellfish Immunol., 2011, vol. 30, pp. 750–754.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, J.Y., Kim, Y.M., Cho, M., et al., Noble tandem-repeat galectin of Manila clam Ruditapes philippinarum is induced upon infection with the protozoan parasite Perkinsus olseni, Dev. Comp. Immunol., 2008, vol. 32, pp. 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  4. Drickamer, K., Two distinct classes of carbohydrate-recognition domains in animal lectins, J. Biol. Chem., 1988, vol. 263, pp. 9557–9560.

    CAS  PubMed  Google Scholar 

  5. Feng, C., Ghosh, A., Amin, M.N., et al., Galectin CvGal2 from the Eastern Oyster (Crassostrea virginica) displays unique specificity for ABH blood group oligosaccharides and differentially recognizes sympatric Perkinsus species, Biochemistry, 2015, vol. 54, pp. 4711–4730.

    Article  CAS  PubMed  Google Scholar 

  6. Feng, C., Ghosh, A., Amin, M.N., et al., The galectin CvGal1 from the eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface, J. Biol. Chem., 2013, vol. 288, pp. 24394–24409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Filer, A., Bik, M., Parsonage, G.N., et al., Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways, Arthritis Rheum., 2009, vol. 60, pp. 1604–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garner, O.B., Aguilar, H.C., Fulcher, J.A., et al., Endothelial galectin-1 binds to specific glycans on Nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation, PLoS Pathog., 2010, vol. 6, art. ID e1000993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hernandez, J.D. and Baum, L.G., Ah, sweet mystery of death! Galectins and control of cell fate, Glycobiology, 2002, vol. 12, pp. 127R–136R.

    Article  CAS  PubMed  Google Scholar 

  10. Honda, S., Kashiwagi, M., Miyamoto, K., et al., Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins, J. Biol. Chem., 2000, vol. 275, pp. 33151–33157.

    Article  CAS  PubMed  Google Scholar 

  11. Houzelstein, D., Goncalves, I.R., Fadden, A.J., et al., Phylogenetic analysis of the vertebrate galectin family, Mol. Biol. Evol., 2004, vol. 21, pp. 1177–1187.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, M., Zhou, T., Wu, Y., et al., Characterisation and functional comparison of single-CRD and multidomain containing galectins CgGal-2 and CgGal-3 from oyster Crassostrea gigas, Fish Shellfish Immunol., 2018, vol. 78, pp. 238–247.

    Article  CAS  PubMed  Google Scholar 

  13. Hughes, R.C., Galectins as modulators of cell adhesion, Biochimie, 2001, vol. 83, pp. 667–676.

    Article  CAS  PubMed  Google Scholar 

  14. Iwanaga, S. and Lee, B.L., Recent advances in the innate immunity of invertebrate animals, J. Biochem. Mol. Biol., 2005, vol. 38, pp. 128–150.

    CAS  PubMed  Google Scholar 

  15. Janeway, C.A., Jr. and Medzhitov, R., Innate immune recognition, Annu. Rev. Immunol., 2002, vol. 20, pp. 197–216.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J., Moon, C., Ahn, M., et al., Immunohistochemical localization of galectin-3 in the pig retina during postnatal development, Mol. Vision, 2009, vol. 15, pp. 1971–1976.

    CAS  Google Scholar 

  17. Koh, H.S., Lee, C., Lee, K.S., et al., Twist2 regulates CD7 expression and galectin-1-induced apoptosis in mature T-cells, Mol. Cells, 2009, vol. 28, pp. 553–558.

    Article  CAS  PubMed  Google Scholar 

  18. Leffler, H., Carlsson, S., Hedlund, M., et al., Introduction to galectins, Glycoconjugate J., 2004, vol. 19, pp. 433–440.

    Article  Google Scholar 

  19. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  20. McGreal, E.P., Martinez-Pomares, L., and Gordon, S., Divergent roles for C-type lectins expressed by cells of the innate immune system, Mol. Immunol., 2004, vol. 41, pp. 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  21. Medzhitov, R. and Janeway, C.A., Jr., Decoding the patterns of self and nonself by the innate immune system, Science, 2002, vol. 296, pp. 298–300.

    Article  CAS  PubMed  Google Scholar 

  22. Pioche-Durieu, C., Keryer, C., Souquère, S., et al., In nasopharyngeal carcinoma cells, Epstein-Barr virus LMP1 interacts with galectin 9 in membrane raft elements resistant to simvastatin, J. Virol., 2005, vol. 79, pp. 13326–13337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rabinovich, G.A. and Gruppi, A., Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease, Parasite Immunol., 2005, vol. 27, pp. 103–114.

    Article  CAS  PubMed  Google Scholar 

  24. Rabinovich, G.A. and Toscano, M.A., Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation, Nat. Rev. Immunol., 2009, vol. 9, pp. 338–352.

    Article  CAS  PubMed  Google Scholar 

  25. Shi, X.-Z., Wang, L., and Xu, S., et al., A galectin from the kuruma shrimp (Marsupenaeus japonicus) functions as an opsonin and promotes bacterial clearance from hemolymph, PLoS One, 2014, vol. 9, art. ID e91794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song, X., Zhang, H., Wang, L., et al., A galectin with quadruple-domain from bay scallop Argopecten irradians is involved in innate immune response, Dev. Comp. Immunol., 2011, vol. 35, pp. 592–602.

    Article  CAS  PubMed  Google Scholar 

  27. Song, X., Zhang, H., Zhao, J., et al., An immune responsive multidomain galectin from bay scallop Argopectens irradians, Fish Shellfish Immunol., 2010, vol. 28, pp. 326–332.

    Article  CAS  PubMed  Google Scholar 

  28. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  29. Tasumi, S. and Vasta, G.R., A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus, J. Immunol., 2007, vol. 179, pp. 3086–3098.

    Article  CAS  PubMed  Google Scholar 

  30. Vasta, G.R., Ahmed, H., and Odom, E.W., Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates, Curr. Opin. Struct. Biol., 2004, vol. 14, pp. 617–630.

    Article  CAS  PubMed  Google Scholar 

  31. Vasta, G., Feng, C., Bianchet, M., et al., Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: From a sweet tooth to the Trojan horse, Fish Shellfish Immunol., 2015, vol. 46, pp. 94–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, J.-X., Xu, W.T., Zhang, X.-W., et al., A C-type lectin is involved in the innate immune response of Chinese white shrimp, Fish Shellfish Immunol., 2009, vol. 27, pp. 556–562.

    Article  CAS  PubMed  Google Scholar 

  33. Yu, Y., Yuan, S., Yu, Y., et al., Molecular and biochemical characterization of galectin from amphioxus: primitive galectin of chordates participated in the infection processes, Glycobiology, 2007, vol. 17, pp. 774–783.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, D., Jiang, S., Hu, Y., et al., A multidomain galectin involved in innate immune response of pearl oyster Pinctada fucata, Dev. Comp. Immunol., 2011, vol. 35, pp. 1–6.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y., He, X., Li, X., et al., The second bactericidal permeability increasing protein (BPI) and its revelation of the gene duplication in the Pacific oyster, Crassostrea gigas, Fish Shellfish Immunol., 2011, vol. 30, pp. 954–963.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Qiu, L., Song, L., et al., Cloning and characterization of a novel C-type lectin gene from shrimp Litopenaeus vannamei, Fish Shellfish Immunol., 2009, vol. 26, pp. 183–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Basic Research Program of China (U201215); Science and Technology Promotion Funding from Guangdong Marine Fisheries Bureau (A201301B08), and Industry Research and Development Project from the Qingyuan Science and Technology Bureau (2013A005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Chen.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changhua Xian, Chen, J., Luo, Y. et al. Identification and Characterization of a Novel Quadruple-Domain Galectin from the Hong Kong Oyster Crassostrea hongkongensis. Russ J Mar Biol 45, 320–329 (2019). https://doi.org/10.1134/S1063074019040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074019040114

Keywords:

Navigation