Skip to main content
Log in

The High Divergence of Two Morphologically Similar Trematode Species of the Genus Nanophyetus of Salmonids from the Data of mtDNA nad1 Gene Sequences

  • Original Papers
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Intestinal flukes of fish (mainly salmonids) belonging to the genus Nanophyetus (Trematoda: Troglotrematidae) are the causative agents of nanophyetiasis, a zoonotic disease of animals and humans, which is widespread in countries in the northern Pacific. Two geographical forms, one from North America and the other from the eastern Eurasia were described within this genus; however, their taxonomic status was debatable. A multilocus analysis of nuclear rDNA sequences applied in this study has shown that these forms are independent nominal species: Nanophyetus salmincola and Nanophyetus schikhobalowi. This study, based on sequencing the mtDNA nad1 gene, has evaluated the genetic variability of N. schikhobalowi from eastern Eurasia (Russia) and compared our data with the results obtained for N. salmincola from North America (United States). The genetic differentiation within the Eurasian sample was 1.4%, that for the North American sample was 0.8%, and differentiation between the samples was 15.5%. High values of genetic divergence and completed sorting of mitochondrial haplotypes confirmed the species independence of the compared geographic forms of Nanophyetus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butorina, T.E., Busarova, O.Yu., and Ermolenko, A.V., Parazity gol’tsov Salmonidae: Salvelinus) Golarktiki (Salmonid Parasites (Salmonidae: Salvelinus) of the Holarctic), Vladivostok: Dal’nauka, 2011.

    Google Scholar 

  2. Dragomeretskaya, A.G., Zelya, O.P., Trotsenko, O.E., and Ivanova, I.B., Social factors of the functioning of nanophyetiasis foci in the Amur region, Med. Parazitol. Parazit. Bolezni, 2014, no. 4, pp. 23–28.

    Google Scholar 

  3. Ermolenko, A.V., Besprozvannykh, V.V., Rumyantseva, E.E., and Voronok, V.M., Pathogens of trematodoses in humans in Primorskii krai, Med. Parazitol. Parazit. Bolezni, 2015, no. 2, pp. 6–10.

    Google Scholar 

  4. Sinovich, L.I. and Vostrikov, L.A., Trematody Dal’nego Vostoka, metodicheskie rekomendatsii (Trematodes of the Far East, Methodical Recommendations), Khabarovsk: Khabarovsk. Nauch.–Issled. Inst. Epidemiol. Mikrobiol., 1974, p.4.

    Google Scholar 

  5. Filimonova, L.V., The spread of nanophyetiasis in the territory of the Soviet Far East, Tr. Gel’mintol. Lab., Akad. Nauk SSSR, 1966, vol. 17, pp. 240–244.

    Google Scholar 

  6. Blair, D., Tkach, V.V., and Barton, D.P., Family Troglotrematidae Odhner, 1914, in Keys to the Trematoda, Wallingford, U.K.: CABI Publ., 2008, vol. 3, pp. 277–289.

    Article  Google Scholar 

  7. Blasco-Costa, I., Cutmore, S.C., Miller, T.L., and Nolan, M.J., Molecular approaches to trematode systematics: “best practice” and implications for future study, Syst. Parasitol., 2016, vol. 93, no. 3, pp. 295–306.

    Article  PubMed  Google Scholar 

  8. Brunner, F. and Eizaguirre, C., Can environmental change affect host/parasite-mediated speciation?, Zoology, 2016, vol. 119, no. 4, pp. 384–394.

    Article  PubMed  Google Scholar 

  9. Chapin, E.A., A new genus and species of trematode, the probable cause of salmon-poisoning in dogs, North Am. Vet., 1926, vol. 7, pp. 36–37.

    Google Scholar 

  10. Chelomina, G.N., Tatonova, Y.V., Hung, N.M., and Ngo, H.D., Genetic diversity of the Chinese liver fluke Clonorchis sinensis from Russia and Vietnam, Int. J. Parasitol., 2014, vol. 44, no. 11, pp. 795–810.

    Article  PubMed  CAS  Google Scholar 

  11. Criscione, C.D and Blouin, M.S., Life cycles shape parasite evolution: Comparative population genetics of salmon trematodes, Evolution, 2004, vol. 58, no. 1, pp. 198–202.

    Article  PubMed  Google Scholar 

  12. Gebhardt, G.A., Millemann, R.E., Knapp, S.E., and Nyberg, P.A., Salmon Poisoning’ disease. II. Secondary intermediate host susceptibility studies, J. Parasitol., 1966, vol. 52, pp. 54–59.

    Article  PubMed  CAS  Google Scholar 

  13. Headley, S.A., Scorpio, D.G., Vidotto, O., and Dumler, J.S., Neorickettsia helminthoeca and salmon poisoning disease: A review, Vet. J., 2011, vol. 187, no. 2, pp. 165–173.

    Article  PubMed  Google Scholar 

  14. Liu, D., Nanophyetus, Molecular Detection of Human Parasitic Pathogens, Boca Raton: CRC Press, 2012, ch. 37, pp. 399–404.

    Book  Google Scholar 

  15. Liu, G.H., Li, B., Li, J.Y., et al., Genetic variation among Clonorchis sinensis isolates from different geographic regions in China revealed by sequence analyses of four mitochondrial genes, J. Helminthol., 2012, vol. 86, pp. 479–484.

    Article  PubMed  CAS  Google Scholar 

  16. Mende, M.B. and Hundsdoerfer, A.K., Mitochondrial lineage sorting in action–historical biogeography of the Hyles euphorbiae complex (Sphingidae, Lepidoptera) in Italy, BMC Evol. Biol., 2013, vol. 13, pp. 83–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Miura, O., Kuris, A.M., Torchin, M.E., et al., Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse), Int. J. Parasitol., 2005, vl. 35, no. 7, pp. 793–801.

    Article  PubMed  CAS  Google Scholar 

  18. Nadler, S.A. and Pérez-Ponce de León, G., Integrating molecular and morphological approaches for characterizing parasite cryptic species: Omplications for parasitology, Parasitology, 2011, vol. 138, pp. 1688–1709.

    Article  PubMed  CAS  Google Scholar 

  19. Pinto, H.A., Griffin, M.J., Quiniou, S.M., et al., Biomphalaria straminea (Mollusca: Planorbidae) as an intermediate host of Drepanocephalus spp. (Trematoda: Echinostomatidae) in Brazil: A morphological and molecular study, Parasitol. Res., 2016, vol. 115, no. 1, pp. 51–62.

    Article  PubMed  Google Scholar 

  20. Posada, D. and Crandall. K.A., Selecting the best-fit model of nucleotide substitution, Syst. Biol., 2001, vol. 50, no. 4, pp. 580–601.

    Article  PubMed  CAS  Google Scholar 

  21. Ronoquist, F. and Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, no. 12, pp. 1572–1574.

    Article  CAS  Google Scholar 

  22. Semyenova, S.K., Morozova, E.V., Chrisanfova, G.G., et al., Genetic differentiation in Eastern European and Western Asian populations of the liver fluke, Fasciola hepatica, as revealed by mitochondrial nad1 and cox genes, J. Parasitol., 2006, vol. 92, no. 3, pp. 525–530.

    Article  PubMed  CAS  Google Scholar 

  23. Skrjabin, K.J. and Podjapolskaja, W.P., Nanophyetus schikhobalowi, n. sp., ein neuer Trematode aus dem Darm des Menschen, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. Orig., 1931, vol. 119, pp. 294–297.

    Google Scholar 

  24. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2731–2739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Thompson, J.D., Gibson, T.J., Plewniak, F., et al., The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, vol. 25, no. 24, pp. 4876–4882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Truett, G.E., Heeger, P., Mynatt, R.L., et al., Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT), Biotechniques, 2000, vol. 29, no. 1, pp. 52–54.

    Article  PubMed  CAS  Google Scholar 

  27. Vaughan, J.A., Tkach, V.V., and Greiman, S.E., Neorickettsial endosymbionts of the Digenea: Diversity, transmission and distribution, Adv. Parasitol., 2012, vol. 79, pp. 253–297.

    Article  PubMed  Google Scholar 

  28. Vilas, R., Criscione, C.D., and Blouin, M.S., A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites, Parasitology, 2005, vol. 131, part 6, pp. 839–846.

    Article  PubMed  CAS  Google Scholar 

  29. Voronova, A.N., Chelomina, G.N., Bespozvannykh, V.V., and Tkach, V.V., Genetic divergence of human pathogens Nanophyetus spp. (Trematoda: Troglotrematidae) on the opposite sides of the Pacific Rim, Parasitology, 2017, vol. 144, no. 5, pp. 601–612.

    Article  PubMed  CAS  Google Scholar 

  30. Witenberg, G., On the anatomy and systematic position of the causative agent of so-called salmon poisoning, J. Parasitol., 1932, vol. 18, no. 4, pp. 258–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Voronova.

Additional information

Original Russian Text © A.N. Voronova, G.N. Chelomina, 2018, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronova, A.N., Chelomina, G.N. The High Divergence of Two Morphologically Similar Trematode Species of the Genus Nanophyetus of Salmonids from the Data of mtDNA nad1 Gene Sequences. Russ J Mar Biol 44, 122–126 (2018). https://doi.org/10.1134/S106307401802013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307401802013X

Keywords

Navigation