Skip to main content
Log in

The Role of Microorganisms in Transformation of Selenium in Marine Waters

  • Review
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The activity of microorganisms is a decisive factor in the transformation of the essential and, at the same time, toxic selenium (Se) in marine waters. This review provides an analysis of the literature data on the microbiological regulation of the state of Se in marine waters: the role of microorganisms in eliminating toxic Se from marine waters through precipitation of reduced Se forms and in the reverse process, transformation of Se into a form available to be taken up by organisms and involvement of this element in the biogeochemical cycle. The processes of transformation of the oxidized and reduced Se forms with the participation of microorganisms in marine waters are considered. It has been shown that in anaerobic conditions bacteria use the oxidized Se forms as electron acceptors (reduction). Bioavailable selenite and selenate ions are formed in the case of aerobic oxidation. Biotransformation of dissolved Se is a key mechanism for the formation of methylated gaseous Se forms in marine waters as one of the ways to remove this element from the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryukhanova, N.N., Geochemistry of sulfur, selenium, tellurium, and associated elements in the Cenozoic deposits of the Baikal rift zone, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Irkutsk, 2007.

    Google Scholar 

  2. Golubkina, N.A., Spiridonova, T.S., Zaitsev, V.F., et al., Accumulation of selenium in aquatic organisms of the Caspian Sea, Yug Ross.: Ekol., Razvit., 2012, no. 1, pp. 77–80.

    Google Scholar 

  3. Golubkina, N.A., Kekina, E.G., and Nadezhkin, S.M., Prospects of enrichment of agricultural plants with iodine and selenium (review), Mikroelem. Med. (Moscow, Russ. Fed.), 2015, vol. 16, no. 3, pp. 12–19.

    CAS  Google Scholar 

  4. Ivanenko, N.V., Chemical and ecological evaluation of the coastal waters in the northwestern Sea of Japan, based on the selenium and arsenic content of the ecosystem components, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2002.

    Google Scholar 

  5. Kovekovdova, L.T., Ivanenko, N.V., Simokon, M.V., and Shcheglov, V.V., Arsenic and selenium in commercial aquatic organisms from the coastal waters of Primorsky Krai, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2001, vol. 129, pp. 3–8.

    Google Scholar 

  6. Lukyanova, O.N., Kovekovdova, L.T., Struppul, N.E., and Ivanenko, N.V., Selen v morskikh organizmakh (Selenium in Marine Organisms), Vladivostok: TINRO-Tsentr, 2006.

    Google Scholar 

  7. Minyuk, G.S. and Drobetskaya, I.V., The effect of selenium on the activity of marine and freshwater microalgae (review), Ekol. Morya, 2000, vol. 54, pp. 26–37.

    Google Scholar 

  8. Reunova, Yu.A., The effect of selenium on morphofunctional characteristics of the marine unicellular algae Dunaliella salina (Chlorophyta), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2007.

    Google Scholar 

  9. Reunova, Yu.A., Aizdaicher, N.A., Khristoforova, N.K., and Reunov, A.A., Effects of selenium on growth and ultrastructure of the marine unicellular alga Dunaliella salina (Chlorophyta), Russ. J. Mar. Biol., 2007, vol. 33, no. 2, pp. 125–132.

    Article  CAS  Google Scholar 

  10. Rusetskaya, N.Yu., Structural and functional patterns of the biological effect of chalcogen-organic compounds, Doctoral (Biol.) Dissertation, Rostov-on-Don, 2014.

    Google Scholar 

  11. Amouroux, D. and Donard, O.F.X., Evasion of selenium to the atmosphere via biomethylation processes in the Gironde estuary, France, Mar. Chem., 1997, vol. 58, nos. 1–2, pp. 173–188.

    Article  CAS  Google Scholar 

  12. Amouroux, D., Liss, P.S., Tessier, E., et al., Role of oceans as biogenic sources of selenium, Earth Planet. Sci. Lett., 2001, vol. 189, nos. 3–4, pp. 277–283.

    Article  CAS  Google Scholar 

  13. Amouroux, D., Pecheyran, C., and Donard, O.F.X., Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions, Appl. Organomet. Chem., 2000, vol. 14, no. 5, pp. 236–244.

    Article  CAS  Google Scholar 

  14. Baines, S.B. and Fisher, N.S., Interspecific differences in the bioconcentration of selenite by phytoplankton and their ecological implications, Mar. Ecol.: Prog. Ser., 2001, vol. 213, pp. 1–12.

    Article  CAS  Google Scholar 

  15. Baines, S.B., Fisher, N.S., Doblin, M.A., and Cutter, G.A., Uptake of dissolved organic selenides by marine phytoplankton, Limnol. Oceanogr., 2001, vol. 46, no. 8, pp. 1936–1944.

    Article  CAS  Google Scholar 

  16. Bender, J., Lee, R.F., and Phillips, P., Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation, J. Ind. Microbiol., 1995, vol. 14, no. 2, pp. 113–118.

    Article  CAS  Google Scholar 

  17. Besser, J.M., Canfield, T.J., and La Point, T.W., Bioaccumulation of organic and inorganic selenium in laboratory food chain, Environ. Toxicol. Chem., 1993, vol. 12, no. 1, pp. 57–72.

    Article  CAS  Google Scholar 

  18. Bowie, G.L. and Grieb, T.M., A model framework for assessing the effects of selenium on aquatic ecosystems, Water, Air, Soil Pollut., 1991, vols. 57–58, pp. 13–22.

    Article  Google Scholar 

  19. Chapman, P.M., Adams, W.J., Brooks, M.L., et al., Ecological Assessment of Selenium in the Aquatic Environment: Summary of a SETAC Pellston Workshop, Pensacola, FL: Soc. Environ. Toxicol. Chem., 2009.

    Google Scholar 

  20. Cutter, G.A., The estuarine behaviour of selenium in San Francisco Bay, Estuarine, Coastal Shelf Sci., 1989, vol. 28, no. 1, pp. 13–34.

    Article  CAS  Google Scholar 

  21. Cutter, G.A. and Bruland, K.W., The marine biogeochemistry of selenium: A re-evaluation, Limnol. Oceanogr., 1984, vol. 29, no. 6, pp. 1179–1192.

    Article  CAS  Google Scholar 

  22. Cutter, G.A. and Cutter, L.S., Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean, Mar. Chem., 1995, vol. 49, no. 4, pp. 295–306.

    Article  CAS  Google Scholar 

  23. Dowdle, P.R. and Oremland, R.S., Microbial oxidation of elemental selenium in soil slurries and bacterial cultures, Environ. Sci. Technol., 1998, vol. 32, pp. 3749–3755.

    Article  CAS  Google Scholar 

  24. Draft Screening Assessment. Selenium and Its Compounds, Ottawa: Environment Canada, Health Canada, 2015. http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=301B5115-1. Accessed May 27, 2017.

  25. Dungan, R.S. and Frankenberger, W.T., Microbial transformations of selenium and the bioremediation of seleniferous environments, Biorem. J., 1999, vol. 3, no. 3, pp. 171–188.

    Article  CAS  Google Scholar 

  26. Fan, T.W.-M., Higashi, R.M., and Lane, A.N., Biotransformations of selenium oxyanion by filamentous cyanophyte-dominated mat cultured from agricultural drainage waters, Environ. Sci. Technol., 1998, vol. 32, no. 20, pp. 3185–3193.

    Article  CAS  Google Scholar 

  27. Fatoki, O.S., Biomethylation in the natural environment: A review, S. Afr. J. Sci., 1997, vol. 93, no. 8, pp. 366–370.

    CAS  Google Scholar 

  28. Fordyce, F.M., Selenium deficiency and toxicity in the environment, Essentials of Medical Geology, Dordrecht: Springer, 2013, ch. 16, pp. 375–415.

    Chapter  Google Scholar 

  29. Garrett, R.G., Natural distribution and abundance of elements, Essentials of Medical Geology: Impacts of the Natural Environment on Public Health, Burlington, MA: Elsevier, 2005, ch. 2, pp. 17–41.

    Google Scholar 

  30. Gladyshev, V.N., Comparative and functional genomics of mammalian selenoprotenomes, Trace Elem. Med. (Moscow), 2013, vol. 14, no. 4, p.4.

    Google Scholar 

  31. Gobler, C.J., Hutchins, D.A., Fisher, N.S., et al., Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte, Limnol. Oceanogr., 1997, vol. 42, no. 7, pp. 1492–1504.

    Article  CAS  Google Scholar 

  32. Gouget, B., Avoscan, L., Sarret, G., et al., Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV, Radiochim. Acta, 2005, vol. 93, pp. 683–689.

    Article  CAS  Google Scholar 

  33. Heider, J. and Böck, A., Selenium metabolism in microorganisms, Adv. Microb. Physiol., 1993, vol. 35, pp. 71–109.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson, T.M., A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes, Chem. Geol., 2004, vol. 204, no. 3, pp. 201–214.

    Article  CAS  Google Scholar 

  35. Kai, N., Ueda, T., Nagatomo, K., et al., The oxidation state and its distribution of selenium in the ocean–II. The vertical distribution of selenium in the Pacific Ocean and the Bay of Bengal, J. Shimonoseki Univ. Fish., 1993, vol. 41, no. 2, pp. 61–64.

    CAS  Google Scholar 

  36. Lemly, A.D. and Smith, G.J., Aquatic Cycling of Selenium: Implications for Fish and Wildlife, Vol. 12: Fish and Wildlife Leaflet, Washington: U.S. Fish and Wildlife Service, 1987.

    Google Scholar 

  37. Luxem, K.E., Vriens, B., Wagner, B., et al., Selenium uptake and volatilization by marine algae, EGU Gen. Assem. Conf. Abstr., 2015, vol. 17, no. EGU2015-6613.

  38. Maher, W.A., Selenium in macroalgae, Bot. Mar., 1985, vol. 28, no. 7, pp. 269–273.

    Article  CAS  Google Scholar 

  39. Maher, W., Roach, A., Doblin, M., et al., Environmental sources, speciation, and partitioning of selenium, Ecological Assessment of Selenium in the Aquatic Environment, Pensacola, FL: CRC Press, 2010, ch. 4, pp. 47–92.

    Chapter  Google Scholar 

  40. Martin, A.J., Simpson, S., Fawcett, S., et al., Biogeochemical mechanisms of selenium exchange between water and sediments in two contrasting lentic environments, Environ. Sci. Technol., 2011, vol. 45, no. 7, pp. 2605–2612.

    Article  PubMed  CAS  Google Scholar 

  41. Measures, C.I. and Burton, J.D., The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes, Earth Planet. Sci. Lett., 1980, vol. 46, no. 3, pp. 385–396.

    Article  CAS  Google Scholar 

  42. Mishra, R.R., Prajapati, S., Das, J., et al., Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product, Chemosphere, 2011, vol. 84, no. 9, pp. 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  43. Mitchell, K.A., Biogeochemistry of selenium isotopes: processes, cycling and paleoenvironmental applications, Utrecht Stud. Earth Sci., 2012, no. 24. https://dspace.library.uu.nl/bitstream/handle/1874/256258/mitchell.pdf?sequence=2. Accessed May 20, 2017.

  44. Nakaguchi, Y., Takei, M., Hattori, H., et al., Dissolved selenium species in the Sulu Sea, the South China Sea and the Celebes Sea, Geochem. J., 2004, vol. 38, no. 6, pp. 571–580.

    Article  CAS  Google Scholar 

  45. Neumann, P.M., De Souza, M.P., Pickering, I.J., and Terry, N., Rapid microalgal metabolism of selenate to volatile dimethylselenide, Plant, Cell Environ., 2003, vol. 26, no. 6, pp. 897–905.

    Article  CAS  Google Scholar 

  46. Orr, P.L., Guiguer, K.R., and Russel, C.K., Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed, Ecotoxicol. Environ. Saf., 2006, vol. 63, no. 2, pp. 175–188.

    Article  PubMed  CAS  Google Scholar 

  47. Oyamada, N., Takahashi, G., and Ishizaki, M., Methylation of inorganic selenium compounds by freshwater green algae, Ankistrodesmus sp., Chlorella vulgaris and Selenastrum sp., Eisei Kagaku, 1991, vol. 37, no. 2, pp. 83–88.

    Article  CAS  Google Scholar 

  48. Patterson, E.L., Milstrey, R., and Stokstad, E.L., Effect of selenium in preventing exudative diathesis in chicks, Proc. Soc. Exp. Biol. Med., 1957, vol. 95, no. 4, pp. 617–620.

    Article  PubMed  CAS  Google Scholar 

  49. Pinsent, J., The need for selenite and molybdate in the formation of formic dehydrogenase by members of the Coli-aerogenes group of bacteria, Biochem. J., 1954, vol. 57, no. 1, pp. 10–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Reamer, D.C. and Zoller, W.H., Selenium biomethylation products from soil and sewage sludge, Science, 1980, vol. 208, no. 4443, pp. 500–502.

    Article  PubMed  CAS  Google Scholar 

  51. Saiki, M.K., Jennings, M.R., and Brumbaugh, W.G., Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries, California, Arch. Environ. Contam. Toxicol., 1993, vol. 24, no. 3, pp. 307–319.

    Article  PubMed  CAS  Google Scholar 

  52. Sarathchandra, S.U. and Watkinson, J.H., Oxidation of elemental selenium to selenite by Bacillus megaterium, Science, 1981, vol. 211, no. 4482, pp. 600–601.

    Article  PubMed  CAS  Google Scholar 

  53. Schwarz, K. and Foltz, C.M., Selenium as an integral part of factor 3 against dietary necrotic liver degeneration, J. Am. Chem. Soc., 1957, vol. 79, no. 12, pp. 3292–3293.

    Article  CAS  Google Scholar 

  54. Shakibaie, M., Salari Mohazab, N., and Ayatollahi Mousavi, S.A., Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans, Jundishapur J. Microbiol., 2015, vol. 8, no. 9, p. e26381.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Staicu, L.C., Ackerson, C.J., Cornelis, P., et al., Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions, J. Appl. Microbiol., 2015, vol. 119, no. 2, pp. 400–410.

    Article  PubMed  CAS  Google Scholar 

  56. Stolz, J.F. and Oremland, R.S., Bacterial respiration of arsenic and selenium, FEMS Microbiol. Rev., 1999, vol. 23, pp. 615–627.

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki, Y., Miyake, Y., Saruhashi, K., and Sugimura, Y., A cycle of selenium in the ocean, Pap. Meteorol. Geophys., 1979, vol. 30, nos. 3–4, pp. 185–189.

    Google Scholar 

  58. Takayanagi, K. and Wong, G.T.F., Organic and colloidal selenium in southern Chesapeake Bay and adjacent waters, Mar. Chem., 1983, vol. 14, no. 2, pp. 141–148.

    Article  CAS  Google Scholar 

  59. Tessier, E., Amouroux, D., Abril, G., et al., Formation and volatilisation of alkyl-iodides and -selenides in macrotidal estuaries, Biogeochemistry, 2002, vol. 59, nos. 1–2, pp. 183–206.

    Article  CAS  Google Scholar 

  60. Wrench, J.J., Organic selenium in seawater: Levels, origins and chemical forms, Mar. Chem., 1983, vol. 12, nos. 2–3, p.237.

    Article  Google Scholar 

  61. Xu, X.-M., Carlson, B., Zhang, Y., et al., New developments in selenium biochemistry: Selenocysteine biosynthesis in eukaryotes and archaea, Biol. Trace Elem. Res., 2007, vol. 119, no. 3, pp. 234–241.

    Article  PubMed  CAS  Google Scholar 

  62. Yang, Y. and Hu, M., Uptake and transformation of selenium by marine phytoplankton, J. Appl. Oceanogr., 1996, vol. 4, pp. 319–323.

    Google Scholar 

  63. Zhang, Y. and Gladyshev, V.N., Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) Project, PLoS Genet., 2008, vol. 4, no. 6, p. e1000095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhou, Z.G., Li, P.F., Liu, Z.L., et al., Study on the accumulation of selenium and its binding to the proteins, polysaccharides and lipids from Spirulina maxima, S. platensis and S. subsalsa, Oceanol. Limnol. Sin., 1997, vol. 28, no. 4, pp. 363–370.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ivanenko.

Additional information

Original Russian Text © N.V. Ivanenko, 2018, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanenko, N.V. The Role of Microorganisms in Transformation of Selenium in Marine Waters. Russ J Mar Biol 44, 87–93 (2018). https://doi.org/10.1134/S1063074018020049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074018020049

Keywords

Navigation