Russian Journal of Marine Biology

, Volume 44, Issue 2, pp 127–134 | Cite as

The Effect of Pentacyclic Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Lambe, 1894 on the Activity of Natural β-1,3-D-glucanase from the Marine Fungus Chaetomium indicum Corda, 1840 and the Marine Bivalve Mollusk Spisula sachalinensis, Schrenck, 1861

  • Yu. V. DubrovskayaEmail author
  • L. K. Shubina
  • T. N. Makarieva
  • I. Yu. Bakunina
Original Papers


The effect of pentacyclic guanidine alkaloids monanchomycalin B, monanchocidin A and normonanchocidin A isolated from the Far-Eastern marine sponge Monanchora pulchra was investigated towards the activity of exo-β-1,3-D-glucanase from the filamentous marine fungus Chaetomium indicum and endo-β-1,3-D-glucanase LIV from the marine bivalve mollusk Spisula sachalinensis. All compounds were shown to be slow irreversible inhibitors of exo-β-1,3-D-glucanase and significantly activated endo-β-1,3-Dglucanase. The equilibrium inhibition constants (Ki, μM) and the inactivation rate constants (kinact, min–1) were determined for each compound. The inhibitory capacities of alkaloids were shown to depend on the structure of the “anchor” part of the molecule of the compounds. Normonanchocidin A was the best inhibitor of exo-β-1,3-D-glucanase from fungi. A possible biological role of these compounds in the life of sponges and their microbial symbionts is discussed here.


sponges of Monanchora pulchra exo-1,3-β-D-glucanase endo-1,3-β-D-glucanase Chaetomium indicum Spisula sachalinensis inhibitors monanchomycalin B monanchocidin A and normonanchocidin A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakunina, I.Yu., Sova, V.V., Elyakova, L.A., et al., Effect of sulfates of polyoxysteroids on exo-and endoglucanases, Biokhimiya, 1991, vol. 56, no. 8, pp. 1397–1405.Google Scholar
  2. 2.
    Bakunina, I.Yu., Nedashkovskaya, O.I., Alekseeva, S.A., et al., Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea, Microbiology (Moscow), 2002, vol. 71, no. 1, pp. 41–47.CrossRefGoogle Scholar
  3. 3.
    Burtseva, Yu.V., Sova, V.V., and Pivkin, M.V., Enzymes of carbohydrate metabolism of mycelial fungi dwelling in the marine environment. β-1,3-gluconase of the marine fungus Chaetomium indicum, Biokhimiya, 2000, vol. 65, no. 10, pp. 1175–1183.Google Scholar
  4. 4.
    Burtseva, Yu.V., Verigina, N.S., Sova, V.V., Pivkin, M.V., and Zvyagintseva, T.N., O-glycosylhydrolases of marine filamentous fungi: β-1,3-glucanases of Trichoderma aureviride, Appl. Biochem. Microbiol., 2003, vol. 39, no. 5, pp. 475–481.CrossRefGoogle Scholar
  5. 5.
    Varfolomeev, S.D., Khimicheskaya enzimologiya (Chemical Enzymology), Moscow: Akademiya, 2005.Google Scholar
  6. 6.
    Zvyagintseva, T.N., Sova, V.V., Bakunina, I.Yu., et al., Marine organisms as sources of biologically active polysaccharides, polysaccharide hydrolases with unique specificity and their inhibitors, Khim. Interesakh. Ustoich. Razvit., 1998, no. 6, pp. 417–426.Google Scholar
  7. 7.
    Zvyagintseva, T.N., Makar’eva, T.N., Stonik, V.A., et al., Sulfated steroids of sponges of the family Halichondriidae are natural inhibitors of endo-1,3-β-Dglucanases, Khim. Prir. Soedin., 1986, no. 1, pp. 71–78.Google Scholar
  8. 8.
    Lukner, M., Vtorichnyi metabolizm u mikroorganizmov, rastenii i zhivotnykh (Secondary Metabolism in Microorganisms, Plants and Animals), Moscow: Mir, 1979.Google Scholar
  9. 9.
    Sova, V.V., Levina, E.A., Andriyashchenko, P.V., et al., The effect of polyhydroxysteroids from sea stars and ophiuroids on the activity of β-1,3-D-glucanases, Khim. Prir. Soedin., 1994, no. 5, pp. 647–651.Google Scholar
  10. 10.
    Sova, V.V., Svetasheva, T.G., and Elyakova, L.A., Natural inhibitors of β-1,3-D-glucanases. A high molecular weight inhibitor from a tropical sponge Myrmekioderma granulate, Khim. Prir. Soedin., 1988, no. 4, pp. 566–572.Google Scholar
  11. 11.
    Sova, V.V. and Fedoreev, S.A., Metabolites from sponges, inhibitors of β-1,3-D-glucanase, Khim. Prir. Soedin., 1990, no. 4, pp. 497–500.Google Scholar
  12. 12.
    Sova, V.V., Pesentseva, M.S., Zakharenko, A.M., et al., Glycosidases of marine organisms, Biochemistry (Moscow), 2013, vol. 78, no. 7, pp. 746–759.PubMedGoogle Scholar
  13. 13.
    Urvantseva, A.M., Bakunina, I.Yu., Nedashkovskaya, O.I., et al., Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae, Appl. Biochem. Microbiol., 2006, vol. 42, no. 5, pp. 484–491.CrossRefGoogle Scholar
  14. 14.
    Amsler, C.D., Iken, K.B., McClintock, J.B., and Baker, B.J., Secondary metabolites from Antarctic marine organisms and their ecological implications, in Marine Chemical Ecology, Boca Raton: CRC Press, 2001, pp. 267–300.Google Scholar
  15. 15.
    Blunt, J.W., Copp, B.R., Hu, W.P., et al., Marine natural products, Nat. Prod. Rep., 2007, vol. 24, no. 1, pp. 31–86.CrossRefPubMedGoogle Scholar
  16. 16.
    Blunt, J.W., Copp, B.R., Keyzers, R.A., et al., Marine natural products, Nat. Prod. Rep., 2012, vol. 29, no. 2, pp. 144–222.CrossRefPubMedGoogle Scholar
  17. 17.
    Blunt, J.W., Copp, B.R., Keyzers, R.A., et al., Marine natural products, Nat. Prod. Rep., 2013, vol. 30, no. 2, pp. 237–323.CrossRefPubMedGoogle Scholar
  18. 18.
    Blunt, J.W., Copp, B.R., Keyzers, R.A., et al., Marine natural products, Nat. Prod. Rep., 2015, vol. 32, no. 2. pp. 116–211.CrossRefPubMedGoogle Scholar
  19. 19.
    Blunt, J.W., Copp, B.R., Keyzers, R.A. et al., Marine natural products, Nat. Prod. Rep., 2016, vol. 33, no. 3. pp. 382–431.CrossRefPubMedGoogle Scholar
  20. 20.
    Burtseva, Y.V., Verigina, N.S., Sova, V.V., et al., Filamentous marine fungi as producers of o-glycosylhydrolases. β-1,3-glucanase from Chaetomium indicum, Mar. Biotechnol., 2003, vol. 5, no. 4, pp. 349–359.CrossRefPubMedGoogle Scholar
  21. 21.
    Burtseva, Y., Verigina, N., Sova, V.V., et al., Comparative characterization of laminarinases from the filamentous marine fungi Chaetomium indicum Corda and Trichoderma aureviride Rifai, J. Appl. Phycol., 2006, vol. 18, pp. 375–380.CrossRefGoogle Scholar
  22. 22.
    Copa-Patiño, J.L., Rodriguez, J., Reyes, F., and Pérez-Leblic, M.I., Effect of beta-glucanases on Penicillium oxalicum cell wall fractions, FEMS Microbiol. Lett., 1990, vol. 58, no. 3, pp. 233–239.CrossRefPubMedGoogle Scholar
  23. 23.
    Dyshlovoy, S.A., Hauschild, J., Amann, K., et al., Marine alkaloid Monanchocidin A overcomes drug resistance by induction of autophagy and lysosomal membrane permeabilization, Oncotarget, 2015, vol. 6, no. 19, pp. 17328–17341.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Esteban, G., Allan, J., Samadi, A., et al., Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease, Biochim. Biophys. Acta, 2014, vol. 1844, no. 6, pp. 1104–1110.CrossRefPubMedGoogle Scholar
  25. 25.
    Fontaine, T., Hartland, R.P., Diaquin, M., et al., Differential patterns of activity displayed by two exo-beta-1,3-glucanases associated with the Aspergillus fumigatus cell wall, J. Bacteriol., 1997, vol. 179, no. 10, pp. 3154–3163.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Green, J.D., Glas, P.S., Cheng, S.D., and Lynn, J.W., Fertilization envelope assembly in sea urchin eggs inseminated in chloride-deficient sea water: II. Biochemical effects, Mol. Reprod. Dev., 1990, vol. 25, no. 2, pp. 177–185.CrossRefPubMedGoogle Scholar
  27. 27.
    Guzii, A.G., Makarieva, T.N., Denisenko, V.A., et al., Topsentiasterol sulfates with novel iodinated and chlori nated side chains from the marine sponge Topsentia sp., Tetrahedron Lett., 2008, vol. 49, no. 50, pp. 7191–7193.CrossRefGoogle Scholar
  28. 28.
    Guzii, A.G., Makarieva, T.N., Denisenko, V.A., et al., Monanchocidin: A new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge Monanchora pulchra, Org. Lett., 2010, vol. 12, no. 19, pp. 4292–4295.CrossRefPubMedGoogle Scholar
  29. 29.
    Ivanova, E.P., Bakunina, I.Y., Nedashkovskaya, O.I., et al., Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens, Curr. Microbiol., 2003, vol. 45, no. 1, pp. 6–10.CrossRefGoogle Scholar
  30. 30.
    Kéry, V., Kogan, G., Zajacová, K., et al., Hydrolysis of yeast cell-wall glucan by extracellular (1→3)-β-glucanases from Aspergillus niger, Enzyme Microb. Technol., 1991, vol. 13, no. 1, pp. 87–90.CrossRefGoogle Scholar
  31. 31.
    Lindquist, N., Chemical defense of early stages of benthic marine invertebrates, J. Chem. Ecol., 2002, vol. 28, no. 10, pp. 1987–2000.CrossRefPubMedGoogle Scholar
  32. 32.
    Makarieva, T.N., Tabakmaher, K.M., Guzii, A.G., et al., Monanchocidins B-E: polycyclic guanidine alkaloids with potent antileukemic activities from the sponge Monanchora pulchra, J. Nat. Prod., 2011, vol. 74, no. 9, pp. 1952–1958.CrossRefPubMedGoogle Scholar
  33. 33.
    Makarieva, T.N., Tabakmaher, K.M., Guzii, A.G., et al., Monanchomycalins A and B, unusual guanidine alkaloids from the sponge Monanchora pulchra, Tetrahedron Lett., 2012, vol. 53, no. 32, pp. 4228–4231.CrossRefGoogle Scholar
  34. 34.
    Morrison, J.F., The slow-binding and slow, tight-binding inhibition of enzyme-catalysed reactions, Trends Biochem. Sci., 1982, vol. 7, no. 3, pp. 102–105.CrossRefGoogle Scholar
  35. 35.
    Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose, J. Biol. Chem., 1944, vol. 153, no. 2, pp. 375–381.Google Scholar
  36. 36.
    Parsons, Z.D. and Gates, K.S., Redox regulation of protein tyrosine phosphatases: Methods for kinetic analysis of covalent enzyme inactivation, Methods Enzymol., 2013, vol. 528, pp. 129–154.CrossRefPubMedGoogle Scholar
  37. 37.
    Powers, J.C., Asgian, J.L., Ekici, O.D., and James, K.E., Irreversible inhibitors of serine, cysteine, and threonine proteases, Chem. Rev., 2002, vol. 102, no. 12, pp. 4639–4750.CrossRefPubMedGoogle Scholar
  38. 38.
    Ramsay, R.R. and Tipton, K.F., Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs, Molecules, 2017, vol. 22, no. 7, p. E1192.CrossRefPubMedGoogle Scholar
  39. 39.
    Ruocco, N., Costantini, S., Palumbo, F., and Constantini, M., Marine sponges and bacteria as challenging sources of enzyme inhibitors for pharmacological applications, Mar. Drugs, 2017, vol. 15, no. 6, p. E173.CrossRefPubMedGoogle Scholar
  40. 40.
    Simmons, C.R., The physiology and molecular biology of plant 1,3-β-D-glucanases and 1,3;1,4-β-D-glucanases, Crit. Rev. Plant Sci., 1994, vol. 13, no. 4, pp. 325–387.Google Scholar
  41. 41.
    Skropeta, D., Pastro, N., and Zivanovic, A., Kinase inhibitors from marine sponges, Mar. Drugs, 2011, vol. 9, no. 10, pp. 2131–2154.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sova, V.V., Elyakova, L.A., and Vaskovsky, V.E., The distribution of the laminarinases in marine invertebrates, Comp. Biochem. Physiol., 1970, vol. 32, no. 3, pp. 459–464.CrossRefGoogle Scholar
  43. 43.
    Sova, V.V., Elyakova, L.A., and Vaskovsky, V.E., Purification and some properties of beta-1,3-glucan glucanohydrolase from the crystalline style of bivalvia, Spisula sachalinensis, Biochim. Biophys. Acta, 1970, vol. 212, no. 1, pp. 111–115.CrossRefPubMedGoogle Scholar
  44. 44.
    Tabakmakher, K.M., Makarieva, T.N., Denisenko, V.A., et al., Normonanchocidins A, B and D, new pentacyclic guanidine glkaloids from the Far-Eastern marine sponge Monanchora pulchra, Nat. Prod. Commun., 2015, vol. 10, no. 6, pp. 913–916.PubMedGoogle Scholar
  45. 45.
    Tweddell, R.J., Jabaji-Hare, S.H., Goetghebeur, M., et al., Purification and partial characterization of a β-1,3-glucanase secreted by the mycoparasite Stachybotrys elegans, Biosci., Biotechnol., Biochem., 1995, vol. 59, no. 12, pp. 2223–2227.CrossRefGoogle Scholar
  46. 46.
    Zakharenko, A.M., Kusaykin, M.I., Kovalchuk, S.N., et al., Enzymatic and molecular characterization of an endo-β-1,3-β-D-glucanase from the crystalline styles of the mussel Perna viridis, Carbohydr. Res., 2011, vol. 346, no. 2, pp. 243–252.CrossRefPubMedGoogle Scholar
  47. 47.
    Zvyagintseva, T.N., Shevchenko, N.M., Popivnich, I.B., et al., A new procedure for the separation of water-soluble polysaccharides from brown seaweeds, Carbohydr. Res., 1999, vol. 322, no. 1–2, pp. 32–39.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Dubrovskaya
    • 1
    Email author
  • L. K. Shubina
    • 1
  • T. N. Makarieva
    • 1
  • I. Yu. Bakunina
    • 1
  1. 1.Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations