Skip to main content
Log in

Combustion of Fine Dispersed Dust-Gas-Air Mixtures in Underground Workings

  • Mining Thermophysics
  • Published:
Journal of Mining Science Aims and scope

Abstract

Abstract—Stationary-state combustion of fine dispersed dust–gas–air mixtures in underground workings is considered. Under the assumption that the single source of heat emission is the carbon oxidation reaction, the second-order nonlinear differential equation is obtained for the determination of temperature and the initial conditions are formulated. The analysis of the solution shows that there exist critical values of the dust–gas–air mixture flow velocity, and the excess over these critical values may result in the mixture combustion. The cross-section of mine working is related with the temperature reached in this cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank-Kamenetsky, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.

    Google Scholar 

  2. Kantorovich, B.V., Osnovy teorii goreniya i gazifikatsii tverdogo topliva (Foundation of the Theory of Solid Fuel Combustion and Gasification), Moscow, 2013.

    Google Scholar 

  3. Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M, Matematicheskaya teoriya goreniya i vzryva (The Mathematical Theory of Combustion and Explosions), Moscow: Nauka, 1980.

    Google Scholar 

  4. Smirnov, N.N., Zverev, I.N., Geterogennoe gorenie (Heterogeneous Combustion), Moscow: MGU, 1992.

    Google Scholar 

  5. Spolding, D.B., Gorenie i massoobmen (Russian Translation) (Combustion and Mass Transfer), Moscow: Mashinostroenie, 1985.

    Google Scholar 

  6. Ju, Y., Maruta, K., Microscale Combustion: Technology Development and Fundamental Research, Progress in Energy and Combustion Science, 2011, vol. 37, no. 6, pp. 669–715.

    Article  Google Scholar 

  7. Bekdemir, C., Somers, B., and de Goey, P., DNS with Detailed and Tabulated Chemistry of Engine Relevant Igniting Systems, Combustion and Flame, 2014, vol. 161, no. 1, pp. 210–221.

    Article  Google Scholar 

  8. Sidorov, A.E., Shevchyuk, V.G., and Kondrat’ev, E.N., Conductive-Radiative Model of a Laminar Flame in Dust Suspensions, Combustion, Explosion, and Shock Waves, 2013, vol. 49, no. 3, pp. 257–263.

    Article  Google Scholar 

  9. Fedorov, A.V., Ignition of Gaseous Suspensions in an Interacting Continuum Regime, Combustion, Explosion, and Shock Waves, 1998, vol. 34, no. 4 pp. 418–425.

    Article  Google Scholar 

  10. Krainov, A.Yu., Self-Ignition of a Two-Component Gas Suspension, Combustion, Explosion, and Shock Waves, 1999, vol. 35, no. 5, pp. 468–475.

    Article  Google Scholar 

  11. Vasil’ev, A.A., Vasil’ev, V.A., Calculated and Experimental Parameters of Combustion and Detonation of Mixtures Based on Methane and Coal Dust, Vest. Nauch. Tsentr. Bezop. Rab. Ugol. Prom., 2016, no. 2, pp. 8–39.

    Google Scholar 

  12. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Tanashev, Yu.Yu., and Bolotov, V.A, Initiation of Underground Fire Sources, J. Min. Sci., 2016, vol. 52, no. 3, pp. 576–592.

    Article  Google Scholar 

  13. Oparin, V.N., Theoretical Fundamentals to Describe Interaction of Geomechanical and Physicochemical Processes in Coal Seams, J. Min. Sci., 2017, vol. 53, no. 2, pp. 201–215.

    Article  Google Scholar 

  14. Chanyshev, A.I., A Method to Determine a Body’s Thermal State, J. Min. Sci., 2012, vol. 48, no. 4, pp. 660–668.

    Article  Google Scholar 

  15. Lykov, A.V., Teplomassoobmen (Heat and Mass Transfer), Moscow: Energiya, 1978.

    Google Scholar 

  16. Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Nauka, 1974.

    Google Scholar 

  17. Samarsky, A.A., Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989.

    Google Scholar 

  18. Lindenau, N.I., Maevskaya, V.M. Vakhrusheva, E.S., et al., Katalog ugley SSSR, sklonnykh k samovozgoraniyu (Directory of Coal of the USSR, Prone to Spontaneous Combustion), Moscow: Nedra, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Cherdantsev.

Additional information

Original Russian Text © S.V. Cherdantsev, Li Hi Un, Yu. M. Filatov, D. V. Botvenko, P. A. Shlapakov, V. V. Kolykhalov, 2018, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2018, No. 2, pp. 172–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherdantsev, S.V., Un, L.H., Filatov, Y.M. et al. Combustion of Fine Dispersed Dust-Gas-Air Mixtures in Underground Workings. J Min Sci 54, 339–346 (2018). https://doi.org/10.1134/S1062739118023714

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739118023714

Keywords

Navigation