Journal of Mining Science

, Volume 53, Issue 4, pp 789–800 | Cite as

Analytical Description of Surface of Blasting-Formed Underground Cavities by Laser Scanning Data

  • V. N. Oparin
  • V. F. Yushkin
  • V. K. Klimko
  • D. E. Rublev
  • A. S. Izotov
  • A. V. Ivanov
New Methods and Instruments in Mining


In terms of Tashtagol Mine, the authors address the issues connected with the configuration and surface of cavities formed by blasts of explosive charges in high-stress rock mass structured as a hierarchy of blocks. Laser scanning of a cavity offers the data on linear and angular characteristics of the cavity surface. The analysis of the surface structure provides details of the rock mass block hierarchy, which essentially influences formation of the roof and sidewalls of the cavity. Individual areas of the cavity surface are described with the help of approximation of measured coordinates of the cavity boundary in the cross sections using the second order curves, including circumferences and ellipses the radius of which are canonically connected with the phenomenon of zonal disintegration of rock mass.


Ore body stress state types charge explosion underground cavity laser scanning cavity surface form hierarchical block structure analytical description zonal disintegration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ukazaniya po bezopasnomu vedeniyu gornykh rabot na mestorozhdeniyakh Gornoi Shorii, sklonnykh k gornym udaram (Guidelines on Safe Mining at Rockburst-Hazrdous Deposits in Gornaya Shoria), Novokuznetsk, 2015.Google Scholar
  2. 2.
    Shrepp, B.V., Mozolev, A.V., Boyarkin, V.I., et al., Stress–Strain State of Rock Mass in the Zone of Stoping, Gorny Zh., 1979, no. 12, pp. 41–43.Google Scholar
  3. 3.
    Freidin, A.M., Neverov, A.A., and Neverov, A.S., Podzemnaya razrabotka rudnykh mestorozhdenii (Underground Ore Mining), V.N. Oparin (Ed.), Novosibirsk: IGD SO RAN–NGU, 2012.Google Scholar
  4. 4.
    Yushkin, V.F., Klimko, V.K., Cjiglintsev, V.A., Shtorts, V.A., and Rublev, D.E., Underground Chamber Roof Formation after Large-Scale Blasting in Tashtagol Mine, Geodynamics and Stress State of the Earth’s Interior: All-Russian Conf. Proc., Novosibirsk: IGD SO RAN, 2013.Google Scholar
  5. 5.
    Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Method of Scanning Seismology Information in Mines, Dokl. Akad Nauk, 1993, vol. 333, no. 6, pp. 784–787.Google Scholar
  6. 6.
    Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part III, J. Min. Sci., 2014, vol. 50, no. 4, pp. 623–645.CrossRefGoogle Scholar
  7. 7.
    Zhurkov, S.N., The Kinetic Concept of the Strength of Solids, Vestn. AN SSSR, 1968, no. 3, pp. 46–52.Google Scholar
  8. 8.
    Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., et al., Zonal Disintegration of Rocks around Underground Workings, Dokl. AN SSSR, 1986, vol. 289, no. 5, pp. 1088–1094.Google Scholar
  9. 9.
    Oparin, V.N., Tapsiev, A.P., Rozenbaum, A.M., et al., Zonal’naya disintegratsiya gornykh porod i ustoichivost’ podzemnykh vyrabotok (Zonal Disintegration of Rocks and Stability of Underground Excavations), Novosibirsk: SO RAN, 2008.Google Scholar
  10. 10.
    Kurlenya M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part II: Experimental Methods and Main Results of Physical Modeling, J Min. Sci., 1996, vol. 32, no. 4, pp. 245–273.CrossRefGoogle Scholar
  11. 11.
    Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part III: Data of On-Site Observations, J. Min. Sci., 1996, vol. 32, no. 5, pp. 341–361.CrossRefGoogle Scholar
  12. 12.
    Oparin, V.N., Seredovich, V.A., Yushkin, V.F., Ivanov, A.V., and Prokop’eva, S.A., Application of Laser Scanning for Developing a 3D Digital Model of and Open-Pit Side Surface, J. Min. Sci., 2007, vol. 43, no. 5, pp. 545–554.CrossRefGoogle Scholar
  13. 13.
    Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Pogarsky, Yu.V., and Nazarov, L.A., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technological Background for Enhanced Oil Recovery by Vibro-Wave Technologies), Novosibirsk: Nauka, 2010.Google Scholar
  14. 14.
    Yushkin, V.F., Oparin, V.N., Zhigalkin, V.M., Simonov, B.F., Arshavsky, V.V., and Tapsiev, A.P., Failure Features of One-Dimensional Model of Block Media under Sustained Uniaxial Loading, J. Min. Sci., 2002, vol. 38, no. 4, pp. 385–396.CrossRefGoogle Scholar
  15. 15.
    Kurleyna, M.V. and Oparin, V.N., Scale factor of Phenomenon of Zonal Disintegration of Rock, and Canonical Series of Atomic and Ionic Radii, J. Min. Sci., 1996, vol. 32, no. 2, pp. 81–90.CrossRefGoogle Scholar
  16. 16.
    Oparin, V.N., Yushkin, V.F., Akinin, A.A., and Balmashnova, E.G., A New Scale of Hierarchically Structured Representations as a Characteristic for Ranking Entities in a Geomedium, J. Min. Sci., 1998, vo. 34, no. 5, pp. 387–401.CrossRefGoogle Scholar
  17. 17.
    David Eberly, Least Squares Fitting of Data, Magic Software, Inc. 1999.Google Scholar
  18. 18.
    Postnikov, M.M. Analiticheskaya geometriya (Analytical Geometry), Moscow: Nauka, 1973.Google Scholar
  19. 19.
    Oparin, V.N., and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale of Hierarchy Presentation in the Science on Rocks), Novosibirsk: Nauka, 2011.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. N. Oparin
    • 1
    • 2
  • V. F. Yushkin
    • 1
  • V. K. Klimko
    • 3
  • D. E. Rublev
    • 1
  • A. S. Izotov
    • 1
  • A. V. Ivanov
    • 4
  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Tashtagol Division, EVRAZRUDATashtagolRussia
  4. 4.Siberian State University of Geosystems and TechnologiesNovosibirskRussia

Personalised recommendations