Journal of Mining Science

, Volume 53, Issue 4, pp 614–629 | Cite as

Methods and Models for Analyzing Methane Sorption Capacity of Coal Based on Its Physicochemical Characteristics

Geomechanics
  • 1 Downloads

Abstract

The authors study the influence of physicochemical parameters on methane adsorption capacity of coal and offer the analytical method for the methane adsorption capacity for three-phased condition of methane. It is found that in the depth interval to 300 m below surface, methane adsorption capacity measured in lab can exceed natural gas content of coal obtained from geological exploration data by 30%, and the change in the thermodynamic condition of coal–methane system brings irreversible physicochemical consequences in terms of the altered ratios of physical states of the main components. There is no linear connection between natural gas content of a coal bed and its methane adsorption capacity with respect to occurrence depth. The application of Big Data in treatment and interpretation of large data flows is described. The theoretical data predicted using the proposed method and the experimental data on methane content of Kuzbass coal agree.

Keywords

Coalbed methane moisture content porosity volatile yield petrography adsorption methane content geomechanical and geodynamic data-flow computing flat data files Langmuir isotherm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polevshchikov, G.Ya., Dinamicheskie gazoproyavleniya pri provedenii podgotovitel’nykh i vskryvayushchikh vyrabotok v ugol’nykh shakhtakh (Dynamic Gas Events in Driving Access and Development Roadways), Kemerovo: IUUKh SO RAN, 2003.Google Scholar
  2. 2.
    Rukovodstvo po degazatsii ugol’nykh shakht (Instructions on Gas Drainage in Coal Mines), Moscow: Nedra, 1990.Google Scholar
  3. 3.
    Rukovodstvo po proektirvaniyu ventilyatsii ugol’nykh shakht (Instructions on Coal Mine Ventilation Planning and Desing), Makeevka–Donbass: MakNII, 1989.Google Scholar
  4. 4.
    Kiryaeva, T.A., Method to Determine Gas-Dynamic Activity of Coal Beds by Exploration Data in Terms of Kuzbass, Cand. Tech. Sci. Dissertation, Kemerovo, 2005.Google Scholar
  5. 5.
    Ettinger, I.L. and Shul’man, N.V., Raspredelenie metana v porakh iskopaemykh uglei (Methane Distribution in Pores in Coal), Moscow: Nauka, 1975.Google Scholar
  6. 6.
    Polevshchikov, G.Ya. and Kiryaeva, T.A. Gas–Dynamic Stability of Coal–Methane Substance, GIAB, Special Issue 7, Kuzbass 1, 2009, pp. 146–149.Google Scholar
  7. 7.
    Kiryaeva, T.A., Natural and Technology-Related Risks in Coal Mines, Improvement of Regional Emergency Control, Prevention and Damping and Issues of Safe Life Activity: Int. Conf. Proc., Novosibirsk: SGGA, 2013, pp. 81–83.Google Scholar
  8. 8.
    Kiryaeva, T.A., Developing Model Representation of Genesis of Hydrocarbon Accumulation in Coal-Bearing Strata and Induced Gas Flow Dynamics, Estestv. Tekhnich. Nauki, 2011, no. 6, pp. 178–183.Google Scholar
  9. 9.
    Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Shutilov, R.A., Kovchavtsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.E., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Processes in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.CrossRefGoogle Scholar
  10. 10.
    Coppens, L., Annales des Mines de Belgique, 1934, vol. 35, no. 1, pp. 20–31.Google Scholar
  11. 11.
    Dokukin, A.V., Chirkov, S.E., and Norel’, B.K., Physical Framework for Mathematical Modeling of Coal Bed Filled with Gas, Nacu. Soobshch. IGD Skochin., 1979, issue 172, pp. 3–11.Google Scholar
  12. 12.
    Ettinger, I.L., Svoistva uglei, vliyayushchie na bezopasnost’ truda d shakhtakh (oal properties Affecting Mine Working Environment), Moscow: Gosgortekhizdat, 1960.Google Scholar
  13. 13.
    Ettinger, I.L., Swelling Stress in the Gas–Coal System as an Energy Source in the development of Gas Bursts, J. Min. Sci., 1979, vol. 15, no. 5, pp. 494–501.Google Scholar
  14. 14.
    Katalog metanoemkosti uglei Kuzbassa (Catalog of Kuzbass Coal Methane Content), Kemerovo: VostNII, 1969.Google Scholar
  15. 15.
    Khodot, V.V., Yanovskaya, M.F., Premysler, Yu.S., et al., Fiziko-khimiya gazodiinamicheskikh yavlenii v shakhtakh (Physics and Chemistry of Gas-Dynamic Events in Mines), Moscow: Nauka, 1973.Google Scholar
  16. 16.
    Khodot, V.V., Effect of Humidity on Coal Methane Content, Izv. AN SSSR, OTN, 1952, no.12.Google Scholar
  17. 17.
    Van Krevelen, D.W. and Schuyler, J., Coal Science: Aspects of Coal Constitution, Elsevier Publishing Company, 1957.Google Scholar
  18. 18.
    Kiselev, A.V. and Yashin, Ya.I., Gazoadsorbtsionnaya khromatografiya (Gas Adsorption Chromatography), Moscow: Nauka, 1967.Google Scholar
  19. 19.
    Khodot, V.V., Yanovskaya, M.F., and Peremysler, Yu.S., Gas Emission from Coal during Fracturing, J. Min. Sci., 1966, vol. 2, no. 6, pp. 551–557.Google Scholar
  20. 20.
    Gunter, J. Etude de la liaison gas—charbon, Rev. Industrie Miverale, 1965, vol. 47, no. 10, pp. 693–708.Google Scholar
  21. 21.
    Kiryaeva, T.A., Influence of Humidification Regime on Gas Emission from Coal and Coal and Gas Outburst Prevention, Estestv. Tekhnich. Nauki, 2012, no. 3, pp. 481–485.Google Scholar
  22. 22.
    Oparin, V.N., Theoretical Fundamentals to Describe Interaction of Geomechanical and Physicochemical Processes in Coal Seams, J. Min. Sci., 2017, vol. 53, no. 2, pp. 201–215.CrossRefGoogle Scholar
  23. 23.
    Zhou, A.T., Wang, K., Kiryaeva, T.A., and Oparin, V.N., Regularities of Two-Phase Gas Flow under Coal and Gas Outbursts in Mines, J. Min. Sci., 2017, vol. 53, no. 3, pp. 533–543.CrossRefGoogle Scholar
  24. 24.
    Kiryaeva, T.A., Features of Stable States of Natural and Man-Made Coal-and-Methane Systems, Estestv. Tekhnich. Nauki, 2011, no. 4, pp. 309–318.Google Scholar
  25. 25.
    Kiryaeva, T.A., Plaksin, M.S., and Ryabtsev, A.A., The Local Forecast for the Gasdynamic Activity of a Coal Layer Based on the Geological Data, GIAB, 2011, no. 8, pp. 66–69.Google Scholar
  26. 26.
    Artser, A.S. and Protasov, S.I., Ugli Kuzbassa: proiskhozhdenie, kachestvo, ispol’zovanie (Kuzbass Coal: Genesis, Quality, Use), Book 1, Kemerovo: KuzGTU, 1999.Google Scholar
  27. 27.
    Bychkov, I.V., Vladimirov, D.Ya., Oparin, V.N., Potapov, V.P., and Shokin, Yu.I., Mining Information Science and Big Data Concept for Intergated Safety Monitoring in Subsoil Management, J. Min. Sci., 2016, vol. 52, no. 6, pp. 1195–1209.CrossRefGoogle Scholar
  28. 28.
    Malyshev, Yu.N., Trubetskoy, K.N., and Airuni, A.T., Fundamental’no-prikladnye metody resheniya problemy ugol’nykh plastiv (Basic and Applied Approaches to Coal Bed Issues), Moscow: IAGN, 2000.Google Scholar
  29. 29.
    Mohammed J. Zaki and Vagner Meira Jr., Data Mining and Analysis. Fundamental Concepts and Algorithm, Cambridge University Press, N.Y., 2014.Google Scholar
  30. 30.
    Self Organizing Map Applications and Novell Algorithm Design, Josohat Igadwa Mwasiag (ERd.), INTECHWEB.ORG, Printed in India, 2011.Google Scholar
  31. 31.
    Potapov, V.P., Matematicheskoe i informatsionnoe modelirovanie geosistem ugol’nykh predpriyatii (Mathematical and Information Modeling of Geosystems in Coal Mines), Kemerovo: Inst. Uglya Uglekhim. SO RAN, 1999.Google Scholar
  32. 32.
    Philipp K. Janert, Data Analysis with Open Source Tools, Reilly Media Inc., Beijing. Cambridge, Tokyo, 2011.Google Scholar
  33. 33.
    Oded Maimon and Lior Rokach, Data Mining and Knowledge Discovery Handbook, Springer, N.Y., Heidelberg, London, 2010.Google Scholar
  34. 34.
    Alekseev, A.D., Airuni, A.T., Zverev, I.V., et al, Capacity of a Coal Organic Substance to Generate Metastable Single-Phase Systems with Gas by the Type of Solid Solutions, Scientific Discovery Diploma 9, AEN, 1994.Google Scholar
  35. 35.
    Kiryaeva, T.A., Determining Resudial Coalbed Methane Content and Its Link with Solute Methane in Coal, Subsoil Use. Mining. Areas and Technologies of Mineral Prospecting, Exploration and Mining. Geoecology: Int. Conf. Proc., Novosibirsk: SGUGiG, 2016, vol. 3, pp. 108–113.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. N. Oparin
    • 1
    • 2
  • T. A. Kiryaeva
    • 1
  • V. P. Potapov
    • 3
  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Kemerovo Division, Institute of Computational Technologies, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations