Journal of Mining Science

, Volume 53, Issue 3, pp 441–448 | Cite as

A Method to Describe Hierarchical Block Structure of Rock Mass, Considering Nonuniformity of Mechanical Properties

Geomechanics
  • 1 Downloads

Abstract

Nonuniformity of a medium shows itself in many characteristics, including Young’s modulus, Poisson’s ratio, shear modulus, as well as limit elasticity and limit plasticity. The article shows that introduction of the nonuniformity of properties allows studying hierarchical block structure of a medium in different geomechanical problems and estimating effect of the blocky structure on the stress state of rock mass.

Keywords

Nonuniformity blocky structure Young’s modulus shear modulus statics dynamics stress state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sadovsky, M.AA., Natural Lumpiness of Rocks, Dokl. AN SSSR, 1979, vol. 247, no. 4, pp. 829–831.Google Scholar
  2. 2.
    Sadovsky, M.A., Denshchikov, V.A., Kondrat’ev, V.N., Romashov, A.N., and Chubarov, V.M., Modeling the Upper Layers of the Earth;s Crust, Fiz. Zemli, 1982, no. 9, pp. 3–9.Google Scholar
  3. 3.
    Sadovsky, M.A., Size Distribution of Solid Joints, Dokl. AN SSSR, 1983, vol. 269, no. 1, pp. 69–72.Google Scholar
  4. 4.
    Sadovsky, M.A., Hierarchy from Dust Particle to Planets, Zemlya Vselennayay, 1984, no. 6, pp. 5–9.Google Scholar
  5. 5.
    Sadovsky, M.A., Kocharyan, G.G., and Rodionov, V.N., Blocky Rock Mass Mechanics, Dokl. AN SSSR, 1988, vol. 302, no. 2, pp. 306–307.Google Scholar
  6. 6.
    Sadovsky, M.A., Adushkin, V.V., and Spivak, A.A., Sizes of Irreversible Deformation Zones under Explosion in a Blocky Medium, Fiz. Zemli, 1989, no. 9, pp. 9–15.Google Scholar
  7. 7.
    Sadovsky, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F., Deformirovanie geofizicheskoi sredy i seismicheskii protsess (Deformation of Geophysical Medium and a Seismic Process), Moscow: Nauka, 1987.Google Scholar
  8. 8.
    Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., Reva, V.N., Glushikhin, F.P., Rozenbaum, M.A., and Trop, E.A., Phenomenon of Zonal Disintegration in Rock Mass Surrounding an Underground Opening, Dokl. AN SSSR, 1986, vol. 289, no. 5, pp. 41–53.Google Scholar
  9. 9.
    Kocharyan, G.G. and Spivak, A.A., Hierarchy of Structural and Geodynamic Characteristics of the Earth’s Crust, Geolog., Inzh. Geolog., Gidrogeolog., Geokriolog., 2002, no. 6, pp. 537–550.Google Scholar
  10. 10.
    Oparin, V.N., Scale Factor of the Phenomenon of Zonal Disintegration of Rocks and Stratification of the Lunar Interior from Seismic Data, J. Min. Sci., 1997, vol. 33, no. 6, pp. 497–507.CrossRefGoogle Scholar
  11. 11.
    Kurlenya, M.V. and Oparin, V.N., Scale Factor of the Phenomenon of Zonal Disintegration of Rocks, and Canonical Series of Atomic and Ionic Radii, J. Min. Sci., 1996, vol. 32, no. 2, pp. 81–90.CrossRefGoogle Scholar
  12. 12.
    Makarov, P.V., Physical Mesomechanics Approach in Simulation of Deformation and Fracture Processes, Phys. Mesomech., 1998, vol. 1, no. 1, pp. 57–75.Google Scholar
  13. 13.
    Makarov, P.V., Loaded Material as a Nonlinear Dynamical System. Simulation Problems, Phys. Mesomech., 2006, vol. 9, no. 1-2, pp. 37–52.Google Scholar
  14. 14.
    Saraikin, V.A., Elastic Properties of Blocks in the Low-Frequency Component of Waves in a 2D Medium, J. Min. Sci., 2009, vol. 45, no. 3, pp. 207–221.CrossRefGoogle Scholar
  15. 15.
    Saraikin, V.A., Chernikov, A.G., and Sher, E.N., Wave Propagation in Two-Dimensional Block Media with Viscoelastic Layers, J. Appl. Mech. Tech. Sci., 2015, vol. 56, no. 4, pp. 688–697.CrossRefGoogle Scholar
  16. 16.
    Krasnovsky, A.A. and Mirenkov, V.E., Deformation of Piecewise-Homogenous Rock Blocks with Fractures under Wedging, GIAB, 2010, no. 8, pp. 286–289.Google Scholar
  17. 17.
    Mirenkov, V.E., Rock Destruction by Tension, J. Min. Sci., 2013, vol. 49, no. 3, pp. 376–381.CrossRefGoogle Scholar
  18. 18.
    Sher, E.N., Aleksandrova, N.I., Ayzenberg-Stepanenko, M.V., and Chernikov, A.G., Influence of the Block-Hierarchical Structure of Rocks on the Peculiarities of the Seismic Wave Propagation, J. Min. Sci., 2007, vol. 43, no. 6, pp. 585–591.CrossRefGoogle Scholar
  19. 19.
    Aleksandrova, N.I., Lamb’s Problem for 3D Problem of Block Medium, J. Fundament. Appl. Min.Sci., 2015, vol. 2, pp. 194–198.Google Scholar
  20. 20.
    Zuev, L.B., Danilov, V.I., and Barannikova, S.A., Fizika makrolokalizatsii plasticheskogo techeniya (Plastic Flow Macrolocalization Physics), Novosibirsk: Nauka, 2008.Google Scholar
  21. 21.
    Zuev, L.B. and Barannikova, S.A., Fizika prochnosti i eksperimental’naya mekhanika (Physics of Strength and Experimental Mechanics), Novosibirsk: Nauka, 2011.Google Scholar
  22. 22.
    Litvinsky, G.G., Analiticheskaya teoriya prochnosti gornykh porod i massivov (Analytical Theory of Strength of Rocks and Rock Masses), Donetsk: Nord-Press, 2008.Google Scholar
  23. 23.
    Korn, G.A. and Korn, T.M., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Gandbook on Mathematics for Scientists and Engineers), Moscow: Nauka, 1978.Google Scholar
  24. 24.
    Alimzhanov, A.M., Stress–Strain State and Stability around Undeground Spherical Cavity in Rock Mass with the Technological Radial Inhomogeneities of Rock Mechanical Properties, Oil and Gas Business E-Journal: http://www. /ogbus.com/years/62012/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State University of Economics and ManagementNovosibirskRussia

Personalised recommendations