Journal of Mining Science

, Volume 53, Issue 3, pp 425–433 | Cite as

Modeling Deformation and Failure of Anisotropic Rocks nearby a Horizontal Well

Geomechanics
  • 3 Downloads

Abstract

The article describes modeling mechanical behavior of rocks, including selection of models of inelastic deformation process in anisotropic rocks, experimental determination of elastoplastic properties of rocks and calculation of stress states for specific design well bottoms. The research is carried out for the conditions of Fedorov oil reservoir. The scope of modeling embraces the situations of uncased well shaft and shaft with slotted holing.

Keywords

Rocks elastoplastic deformation geomechanical modeling truly triaxial tests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coulomb, C.A., Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs, à l'architecture, Mem. Acad. Roy. Div. Sav., 1776, vol. 7, pp. 343–387.Google Scholar
  2. 2.
    Goodman, R.E., Introduction to Rocks Mechanics, New York, John Wiley and Sons, 1980.Google Scholar
  3. 3.
    Barton, N., A Model Study of Behavior of Steep Excavated Rock Slopes, PhD Thesis, University of London, 1971.Google Scholar
  4. 4.
    Barton, N., From Empiricism, through Theory, to Problem Solving in Rock Mechanics, Harmonizing Rock Engineering and the Environment: Proceedings of the 12th ISRM Int. Congr. on Rock Mechanics, Qihi Qian, Yingxin Zhou (Eds.), Beijing, China, 2011, pp. 3–17.CrossRefGoogle Scholar
  5. 5.
    Drucker, D.C. and Prager, W., Soil Mechanics and Plastic Analysis for Limit Design, Quart. of Appl. Math., 1952, vol. 10, no. 2, pp. 157–165.CrossRefGoogle Scholar
  6. 6.
    Novozhilov, V.V., Forms of Connection between Stresses and Strains in the Initially Isotropic Inelastic Bodies (Geometrical Issue), Prikl. Matem Mekh., 1963, vol. 27, no. 5, pp. 794–812.Google Scholar
  7. 7.
    Hill, R., A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. Roy. Soc., London A., 1948, 193, pp. 281–297.CrossRefGoogle Scholar
  8. 8.
    Chanyshev, A.I., Plasticity of Anisotropic Media, J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 2, pp. 311–314.CrossRefGoogle Scholar
  9. 9.
    Chanyshev, A.I., Solution of Limit Load Problems for a Rigid–Plastic Anisotropic Body, J. Appl. Mech. Tech. Phys., 2984, vol. 25, no. 5, pp. 806–809.CrossRefGoogle Scholar
  10. 10.
    Lomakin, E.V., Nonlinear Deformation of Materials Possessing Resistance Governed by Stress State, Izv. AN SSSR. Mekh. Tverd. Tela, 1980, no. 4, pp. 92–99.Google Scholar
  11. 11.
    Lomakin, E.V., Constitutive Equations of the Deformation Theory for Dilatant Medium, Izv. AN SSSR. Mekh. Tverd Tela, 1991, no. 6, pp. 66–75.Google Scholar
  12. 12.
    LOmakin, E.V., Plastic Flow in a Dilatant Medium under Plane-Strain Deformation, Izv. AN SSSR. Mekh. Tverd. Tela, 2000, no. 6, pp. 58–68.Google Scholar
  13. 13.
    Myasnikov, V.P. and Oleinikov, A.I., Equations of the Theory of Elasticity and the Fluidity Condition for Friable Linearly Dilating Media, J. Min. Sci., 1984, vol. 20, no. 6, pp. 424–434.Google Scholar
  14. 14.
    Annin, B.D., Anisotropy of Elastoplastic Properties of Materials, Vestn. Nizhegorod. Univer. Lobachevsk., 2011, no. 4, pp. 1353–1354.Google Scholar
  15. 15.
    Annin, B.D., A New Class of Constitutive Relations of Linear Anisotropic Hereditary Theory of Elasticity, Composites and Nanostructures, 2016, vol. 8, no. 1, pp. 1–6.Google Scholar
  16. 16.
    Imamutdinov, D.I. and Chanishev, A.I., Elastoplastic Problem of an Extended Cylindrical Working, J. Min. Sci., 1988, vol. 24, no. 3, pp. 199–207.Google Scholar
  17. 17.
    Kurlenya, M.V., Mirenkov, V.E., and Shutov, V.A., Rock Deformation around Stopes at Deep Levels, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1001–1006.CrossRefGoogle Scholar
  18. 18.
    Salganik, R.L., Mishchenko, A.A., and Fedotov, A.A., Stress State in the Vicinity of Excavation in Deep Horizontal Bed, J. Min. Sci., 2015, vol. 51, no. 2, pp. 220–227.CrossRefGoogle Scholar
  19. 19.
    Protosenya, A.G., Karasev, M.A., and Belyakov, N.A., Elastoplastic Problem for Noncircular Openings under Coulomb’s Criterion, J. Min. Sci., 2016, vol. 52, no. 1, pp. 53–61.CrossRefGoogle Scholar
  20. 20.
    Caddel, R.M., Raghava, E.S., and Atkins, A.G., A Yield Criterion for Anisotropic and Pressure Dependent Solids Such as Oriented Polymers, J. Materials Science, 1973, vol. 8, pp. 1641–1646.CrossRefGoogle Scholar
  21. 21.
    Deshpande, V.S., Fleck, N.A., and Ashby, M.F., Effective Properties of the Octet-Truss Lattice Material, J. Mechanics and Physics of Solids, 2001, vol. 49, pp. 1747–1769.CrossRefGoogle Scholar
  22. 22.
    Reynolds, O., On the Dilatancy of Media Composed of Rigid Particles in Contact, with Experimental Illustrations, Philosophical Magazine, 1885, series 5, vol. 20, no. 127, pp. 469–481.Google Scholar
  23. 23.
    Mead, W.J,. The Geologic Rôle of Dilatancy, Journal of Geology, 1925, vol. 33, no. 7, pp. 685–698.CrossRefGoogle Scholar
  24. 24.
    Nikolaevsky, V.N., Connection of Volumetric and Shear Strains and Shock Waves in Soft Soil, Dokl.Akad Nauk SSSR, 1967, vol. 177, pp. 542–543.Google Scholar
  25. 25.
    Nikolaevsky, V.N., Geomekhanika i fluidodinamika (Geomechanics and Fluid Dynamics), Moscow: Nedra, 1996.Google Scholar
  26. 26.
    Hill, R., The Mathematical Theory of Plasticity, New York, Oxford University Press, 1983.Google Scholar
  27. 27.
    Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti (Applied Theory of Plasticity and Creep), Moscow: Mashinostroenie, 1975.Google Scholar
  28. 28.
    Karev, V.I., Klimov, D.M., Kovalenko, Yu.F., and Ustinov, K.B., Fracture of Sedimentary Rocks under a Complex Triaxial Stress State, Mechanics of Solids, 2016, vol. 51, no. 5, pp. 522–526.CrossRefGoogle Scholar
  29. 29.
    Morita, N. and Grary, K.E., A Constitutive Equation for Nonlinear Stress–Strain Curves in Rock and Its Application to Stress Analysis around a Borehole During Drilling, Society of Petroleum Engineers of AIME (Paper) SPE, Dallas, Tex. Soc. of Pet. Eng. of AIME, no. 9328.Google Scholar
  30. 30.
    Stefanov, Yu.P., Some Features of Numerical Modeling of Elasto–Brittle–Plastic Material Behavior, Fiz. Mezomekh., 2005, vol. 8, no. 3, pp. 129–142.Google Scholar
  31. 31.
    Karev, V.I., Kovalenko, Yu.F., Zhuravlev, A.B., and Ustinov, K.B., Model of Seepage to a Borehole with Regard to Permeability and Stress Relationship, Prots. Geosred., 2015, no. 4(4), pp. 34–44.Google Scholar
  32. 32.
    Ustinov, K.B., Application of Plastic Flow Models to Describing the Nonelastic Deformation of Anisotropic Rocks, Prots. Geosred., 2016, no. 3(7), pp. 278–287.Google Scholar
  33. 33.
    Karev, V.I. and Kovalenko, Yu.F., Triaxial Loading System as a Tool for Solving Geotechnical Problems of Oil and Gas Production, True Triaxial Testing of Rocks, Leiden, CRC Press. Balkema, 2013, pp. 301–310.Google Scholar
  34. 34.
    Karev, V.I., Klimov, D.M., Kovalenko, Yu.F., and Ustinov, K.B., Fracture Model of Anisotropic Rocks under Complex Loading, Fiz. Mezomekh., 2016, vol. 19, no. 6, pp. 34–40.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Karev
    • 1
  • Yu. F. Kovalenko
    • 1
  • K. B. Ustinov
    • 1
  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations