Skip to main content
Log in

Modeling Deformation and Failure of Anisotropic Rocks nearby a Horizontal Well

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article describes modeling mechanical behavior of rocks, including selection of models of inelastic deformation process in anisotropic rocks, experimental determination of elastoplastic properties of rocks and calculation of stress states for specific design well bottoms. The research is carried out for the conditions of Fedorov oil reservoir. The scope of modeling embraces the situations of uncased well shaft and shaft with slotted holing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coulomb, C.A., Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs, à l'architecture, Mem. Acad. Roy. Div. Sav., 1776, vol. 7, pp. 343–387.

    Google Scholar 

  2. Goodman, R.E., Introduction to Rocks Mechanics, New York, John Wiley and Sons, 1980.

    Google Scholar 

  3. Barton, N., A Model Study of Behavior of Steep Excavated Rock Slopes, PhD Thesis, University of London, 1971.

    Google Scholar 

  4. Barton, N., From Empiricism, through Theory, to Problem Solving in Rock Mechanics, Harmonizing Rock Engineering and the Environment: Proceedings of the 12th ISRM Int. Congr. on Rock Mechanics, Qihi Qian, Yingxin Zhou (Eds.), Beijing, China, 2011, pp. 3–17.

    Chapter  Google Scholar 

  5. Drucker, D.C. and Prager, W., Soil Mechanics and Plastic Analysis for Limit Design, Quart. of Appl. Math., 1952, vol. 10, no. 2, pp. 157–165.

    Article  Google Scholar 

  6. Novozhilov, V.V., Forms of Connection between Stresses and Strains in the Initially Isotropic Inelastic Bodies (Geometrical Issue), Prikl. Matem Mekh., 1963, vol. 27, no. 5, pp. 794–812.

    Google Scholar 

  7. Hill, R., A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. Roy. Soc., London A., 1948, 193, pp. 281–297.

    Article  Google Scholar 

  8. Chanyshev, A.I., Plasticity of Anisotropic Media, J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 2, pp. 311–314.

    Article  Google Scholar 

  9. Chanyshev, A.I., Solution of Limit Load Problems for a Rigid–Plastic Anisotropic Body, J. Appl. Mech. Tech. Phys., 2984, vol. 25, no. 5, pp. 806–809.

    Article  Google Scholar 

  10. Lomakin, E.V., Nonlinear Deformation of Materials Possessing Resistance Governed by Stress State, Izv. AN SSSR. Mekh. Tverd. Tela, 1980, no. 4, pp. 92–99.

    Google Scholar 

  11. Lomakin, E.V., Constitutive Equations of the Deformation Theory for Dilatant Medium, Izv. AN SSSR. Mekh. Tverd Tela, 1991, no. 6, pp. 66–75.

    Google Scholar 

  12. LOmakin, E.V., Plastic Flow in a Dilatant Medium under Plane-Strain Deformation, Izv. AN SSSR. Mekh. Tverd. Tela, 2000, no. 6, pp. 58–68.

    Google Scholar 

  13. Myasnikov, V.P. and Oleinikov, A.I., Equations of the Theory of Elasticity and the Fluidity Condition for Friable Linearly Dilating Media, J. Min. Sci., 1984, vol. 20, no. 6, pp. 424–434.

    Google Scholar 

  14. Annin, B.D., Anisotropy of Elastoplastic Properties of Materials, Vestn. Nizhegorod. Univer. Lobachevsk., 2011, no. 4, pp. 1353–1354.

    Google Scholar 

  15. Annin, B.D., A New Class of Constitutive Relations of Linear Anisotropic Hereditary Theory of Elasticity, Composites and Nanostructures, 2016, vol. 8, no. 1, pp. 1–6.

    Google Scholar 

  16. Imamutdinov, D.I. and Chanishev, A.I., Elastoplastic Problem of an Extended Cylindrical Working, J. Min. Sci., 1988, vol. 24, no. 3, pp. 199–207.

    Google Scholar 

  17. Kurlenya, M.V., Mirenkov, V.E., and Shutov, V.A., Rock Deformation around Stopes at Deep Levels, J. Min. Sci., 2014, vol. 50, no. 6, pp. 1001–1006.

    Article  Google Scholar 

  18. Salganik, R.L., Mishchenko, A.A., and Fedotov, A.A., Stress State in the Vicinity of Excavation in Deep Horizontal Bed, J. Min. Sci., 2015, vol. 51, no. 2, pp. 220–227.

    Article  Google Scholar 

  19. Protosenya, A.G., Karasev, M.A., and Belyakov, N.A., Elastoplastic Problem for Noncircular Openings under Coulomb’s Criterion, J. Min. Sci., 2016, vol. 52, no. 1, pp. 53–61.

    Article  Google Scholar 

  20. Caddel, R.M., Raghava, E.S., and Atkins, A.G., A Yield Criterion for Anisotropic and Pressure Dependent Solids Such as Oriented Polymers, J. Materials Science, 1973, vol. 8, pp. 1641–1646.

    Article  Google Scholar 

  21. Deshpande, V.S., Fleck, N.A., and Ashby, M.F., Effective Properties of the Octet-Truss Lattice Material, J. Mechanics and Physics of Solids, 2001, vol. 49, pp. 1747–1769.

    Article  Google Scholar 

  22. Reynolds, O., On the Dilatancy of Media Composed of Rigid Particles in Contact, with Experimental Illustrations, Philosophical Magazine, 1885, series 5, vol. 20, no. 127, pp. 469–481.

    Google Scholar 

  23. Mead, W.J,. The Geologic Rôle of Dilatancy, Journal of Geology, 1925, vol. 33, no. 7, pp. 685–698.

    Article  Google Scholar 

  24. Nikolaevsky, V.N., Connection of Volumetric and Shear Strains and Shock Waves in Soft Soil, Dokl.Akad Nauk SSSR, 1967, vol. 177, pp. 542–543.

    Google Scholar 

  25. Nikolaevsky, V.N., Geomekhanika i fluidodinamika (Geomechanics and Fluid Dynamics), Moscow: Nedra, 1996.

    Google Scholar 

  26. Hill, R., The Mathematical Theory of Plasticity, New York, Oxford University Press, 1983.

    Google Scholar 

  27. Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti (Applied Theory of Plasticity and Creep), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  28. Karev, V.I., Klimov, D.M., Kovalenko, Yu.F., and Ustinov, K.B., Fracture of Sedimentary Rocks under a Complex Triaxial Stress State, Mechanics of Solids, 2016, vol. 51, no. 5, pp. 522–526.

    Article  Google Scholar 

  29. Morita, N. and Grary, K.E., A Constitutive Equation for Nonlinear Stress–Strain Curves in Rock and Its Application to Stress Analysis around a Borehole During Drilling, Society of Petroleum Engineers of AIME (Paper) SPE, Dallas, Tex. Soc. of Pet. Eng. of AIME, no. 9328.

  30. Stefanov, Yu.P., Some Features of Numerical Modeling of Elasto–Brittle–Plastic Material Behavior, Fiz. Mezomekh., 2005, vol. 8, no. 3, pp. 129–142.

    Google Scholar 

  31. Karev, V.I., Kovalenko, Yu.F., Zhuravlev, A.B., and Ustinov, K.B., Model of Seepage to a Borehole with Regard to Permeability and Stress Relationship, Prots. Geosred., 2015, no. 4(4), pp. 34–44.

    Google Scholar 

  32. Ustinov, K.B., Application of Plastic Flow Models to Describing the Nonelastic Deformation of Anisotropic Rocks, Prots. Geosred., 2016, no. 3(7), pp. 278–287.

    Google Scholar 

  33. Karev, V.I. and Kovalenko, Yu.F., Triaxial Loading System as a Tool for Solving Geotechnical Problems of Oil and Gas Production, True Triaxial Testing of Rocks, Leiden, CRC Press. Balkema, 2013, pp. 301–310.

    Google Scholar 

  34. Karev, V.I., Klimov, D.M., Kovalenko, Yu.F., and Ustinov, K.B., Fracture Model of Anisotropic Rocks under Complex Loading, Fiz. Mezomekh., 2016, vol. 19, no. 6, pp. 34–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Karev.

Additional information

Original Russian Text © V.I. Karev, Yu.F. Kovalenko, K.B. Ustinov, 2017, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2017, No. 3, pp. 12–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karev, V.I., Kovalenko, Y.F. & Ustinov, K.B. Modeling Deformation and Failure of Anisotropic Rocks nearby a Horizontal Well. J Min Sci 53, 425–433 (2017). https://doi.org/10.1134/S1062739117032319

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739117032319

Keywords

Navigation