Journal of Mining Science

, Volume 53, Issue 1, pp 161–175 | Cite as

Identifying Rare Earth Elements and Thorium and Uranium in Iron Oxide–Apatite Deposit of Gazestan Bafgh, Southeast of Iran

  • A. A. Dehghanzadeh Bafghi
  • A. H. Kohsary
  • F. Mohammad Torab
  • H. Mojtahedzadeh
Mineral Dressing


The Gazestan magnetite-apatite deposit is one of Kiruna-type deposits located 78 km from Bafgh in the province of Yazd, in the Bafgh Posht-e-Badam district, southeast of Iran. In the mining region of Bafgh, volcanic rocks and Precambrian volcano-sedimentary are the main host of iron-apatite deposits. Iron deposits are essentially located in Bafgh region inside the green acidic metamorphic rocks. Volcanic rocks are basically rhyolite and rhyodacitic and the sedimentary units are mostly made of dolomite. Rock units of the region belong to the Rizzo series. The Bafgh apatite compounds are fluoride-type and seen in the monazite mineral. The similarity of the rare earth elements pattern in all samples indicates the magma source. The most amount of rare earth elements in the Gazestan deposit include 7766.25 ppm and the most amount of Th is equal to 65.1 ppm and U is equal to 8.33 ppm. The most amount of P2O5 s equal to 26.5 wt% and Fe is equal to 61.3 wt%. Also, it can be concluded that due to their high correlation with rare earth elements, the deposit is of Uranium Thorium-bearing type.


Iron oxide–apatite deposit rare earth elements Bafgh Gazestan thorium and uranium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stosch, H.G., Romer, R.L., Daliran, F., and Rhede, D., Uranium–Lead Ages of Apatite from Iron Oxide Ores of the Bafq District, East-Central Iran, Miner Deposita, Springer, 46, 2011, 9–21.CrossRefGoogle Scholar
  2. 2.
    Forster, H. and Jafarzadeh, A., The Bafq Mining District in Central Iran a Highly Mineralized Infracambrian Volcanic Field, Economic Geology, 89, 1994, 1697–1721.CrossRefGoogle Scholar
  3. 3.
    Samani, B.A., Metallogeny of the Precamberian in Iran, Precambrian Research, 1988, vol. 39, pp. 85–106.CrossRefGoogle Scholar
  4. 4.
    El-Bialy, M.Z., On the Pan-African Transition of the Arabian-Nubian Shield from Compression to Extension: The Post-Collision Dokhan Volcanic Suite of Kid-Malhak Region Sinai, Egypt, Gondwana Research, 2010, vol. 17, pp. 26–43.CrossRefGoogle Scholar
  5. 5.
    Harlov, D.E., Andersson, U.B., Förster, H.J., and Nystro, J.O., Apatite–Monazite Relations in the Kiirunavaara Magnetite–Apatite Ore, Northern Sweden, Chemical Geology, 2002, vol. 191, pp. 47–72.CrossRefGoogle Scholar
  6. 6.
    Kurmies, I., The Magnetite-Apatite Ore of the Kiruna District Northern Sweden, Institute of Geology, University of Mining and Technology Freiberg, 2002.Google Scholar
  7. 7.
    Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., Haller, A., Mark, G., Oliver, N.H.S., and Marschik, R., Iron Oxide Copper-Gold Deposits:Geology, Space-Time Distribution, and Possible Modes of Origin, Society of Economic Geologists, Inc. Economic Geology 100th Anniversary, 2005, pp. 371–405.Google Scholar
  8. 8.
    Nold, J.L., Dudley, M.A., and Davidson, P., The Southeast Missouri (USA) Proterozoic Iron Metallogenic Province-Types of Deposits and Genetic Relationships to Magnetite-Apatite and Iron Oxide-Copper-Gold Deposits, Ore Geology Reviews, 2014, vol. 57, pp. 154–171.CrossRefGoogle Scholar
  9. 9.
    Pålsson, B.I., Martinsson, O., Wanhainen, C., and Fredriksson, A., Unlocking Rare Earth Elements From European Apatite-Iron Ores, 1st European Rare Earth Resources Conference Proc., 2014, pp. 211–220.Google Scholar
  10. 10.
    Andersson, U.B., Zack, T., Aupers, K., Blomgren, H., Hogmalm, J., Schulz, B., and Krause, J., Ages of Hydrothermal Overprints in the Kiruna Iron oxideapatite Ores as Recorded in Secondary Monazite and Xenotime, Conference: International Geological Congress, At Cape Town, 2016.Google Scholar
  11. 11.
    Mucke, A. and Younessi, R., Magnetite–Apatite Deposits (Kiruna-Type) along the Sanandaj–Sirjan Zone and in the Bafq Area, Iran, Associated with Ultramafic and Calcalkaline Rocks and Carbonatites, Mineralogy and Petrology, 1994, vol. 50, pp. 219–244.Google Scholar
  12. 12.
    Nazary, M. and Khajo, M., Mineralogy and Geochemistry of RRE Minerals in Esfordi Alkali–Magmatic Phosphate Mine, Bafgh, Centeral Iran, Alkaline. web. Ru, 2009.Google Scholar
  13. 13.
    Sabet-Mobarhan-Talab, A. and Alinia, F., Geology, Geochemistry, and Some Genetic Discussion of the Chador-Malu Iron Oxide–Apatite Deposit, Bafq District, Central Iran, Arab. J. Geosciences, 2015.Google Scholar
  14. 14.
    Orris, G.J., Dunlap, P., and Wallis, J.C., Phosphat Occurrance and Potential in the Region of Afghanestan, Including Parts of China, Iran, Pakestan, Tajikestan, Turkimenstan, and Uzbekistan, U.S.Geological Survey, 2015.Google Scholar
  15. 15.
    Torab, F.M. and Thesis, D., Geochemistry and Metallogeny of Magnetite–Apatite Deposits of the Bafq Mining District, Central Iran, Clausthal University of Technology, Germany, 2008.Google Scholar
  16. 16.
    Hitzman, M.W., Oreskes, N., and Einaudi, M.T., Geological Characteristics and Tectonic Setting of Proterozoic Iron Oxide (Cu-U-Au-REE) deposits, Precambrian Research, 1992, vol. 58, pp. 241–287.CrossRefGoogle Scholar
  17. 17.
    Aftabi, A., Mohseni, S., Babeki, A., and Azaraien, H., Fluid Inclusion and Stable Isotope Study of the Esfordi Apatite–Magnetite Deposite, Centeral, Iran–A Discussion, Society of Economic Geologists, Inc. Economic Geology, 2009, vol. 104, pp. 137–143.CrossRefGoogle Scholar
  18. 18.
    Heidarian, H., Padyar, F., and Alirezaei, S., Fluid Inclusion Evidence For a Hydrothermal Origin for Magnetite–Apatite Ores at Chadormalu Iron Deposit, Bafq District, Central Iran, 4th Biennial Conference on Asian Current Research on Fluid Inclusions ACROFI IV, Australia, 2012.Google Scholar
  19. 19.
    Eslamizadeh, A. and Samanirad, Sh., Petrography and Geochemistry of the REE-Bearing Fe–Oxide–Apatite Assemblages from the Sheytour Deposit East Central Iran, 3rd International Conference on Recearch in Engineering, Science and Technology, Batumi, Georgia, 2016.Google Scholar
  20. 20.
    Jami, M. and Thesis, D., Geology, Geochemistry and Evolution of the Esfordi Phosphate–Iron Deposit, Bafq Area, Central Iran, The University of New South Wales, Australia, 2005.Google Scholar
  21. 21.
    Haeri, H., Shahriar, K., Marji, M. F., and Moarefvand, P., Modeling The Propagation Mechanism of Two Random Micro Cracks in Rock Samples under Uniform Tensile Loading, 13th International Conference on Fracture, Beijing, China, 2013.Google Scholar
  22. 22.
    Cox, K.G., Bell, J.D., Pankhurst, R.J., The Interpretation of Igneous Rocks, 1979.CrossRefGoogle Scholar
  23. 23.
    Eslamizadeh, A., Lithogeochemistry of Iron–Titanium–Vanadium–Phosphorus Mineralization within the Sheytur Deposit in East of Central Iran, Geochemistry J., 2016, vol. 3, pp. 16–25.Google Scholar
  24. 24.
    Rollinson, H.R., Using Geochemical Data: Evaluation, Peresentation, Interperatition, Longman Group UK Limited, 1993.Google Scholar
  25. 25.
    Sarangi, S., Srinivasan, R., and Balaram, V., REE Geochemistry of Auriferous Quartz Carbonate Veins of Neoarchean Ajjanahalli Gold Deposit, Chitradurga Schist Belt, Dharwar Craton, India. Geoscience Frontiers, 2013, vol. 4, pp. 231–239.Google Scholar
  26. 26.
    Seredin, V.V. and Dai, S., Coal Deposits as Potential Alternative Sources for Lanthanides and Yttrium, International Journal of Coal Geology, 2012, vol. 94, pp. 67–93.CrossRefGoogle Scholar
  27. 27.
    Cui, Y., Liu, J., Ren, X., and Shi, X., Geochemistry of Rare Earth Elements in Cobalt–Rich Crusts from the Mid-Pacific M Seamount, Journal of Rare Earths, 2009, vol. 27, no. 1, pp. 169.CrossRefGoogle Scholar
  28. 28.
    Henderson, P., Rare Earth Element Geochemistry, 1984.Google Scholar
  29. 29.
    Mokhtari, A., Hossen Zadeh, GH., and Emami, M.H,. Genesis of Iron-Apatite Ores in Posht-e-Badam Block (Central Iran) Using REE Geochemistry, Journal, Earth Syst. Science, 2013, vol. 122, no. 3, pp. 795–807.CrossRefGoogle Scholar
  30. 30.
    Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S., and Ghazban, F., Significance of Apatite REE Depletion and Monazite Inclusions in the Brecciated Se-Chahun Iron Oxide–Apatite deposit, Bafq District, Iran, Insights from Paragenesis and Geochemistry, Chemical Geology, 2011, vol. 281, pp. 253–269.Google Scholar
  31. 31.
    Moghaddasi, S.J., Geochemistry and Petrology of Iron Ore Deposit, Relying on the Rare Earth Elements Geochemistry, A Case Study; Chadormalu Mining, Bafq, Yazd Province, Iran, Geodynamics Research International Bulletin, 2015, vol. 3, pp. 9–21.Google Scholar
  32. 32.
    Zaremotlagh, S. and Hezarkhani, A., The Use of Decision Tree Induction and Artificial Neural Networks for Recognizing the Geochemical Distribution Patterns of LREE in the Choghart deposit, Central Iran, Journal of African Earth Sciences, 2016.Google Scholar
  33. 33.
    Rahimi, E., Maghsoudi, A., and Hezarkhani, A., Geochemical Investigation and Statistical Analysis on Rare Earth Elements in Lakehsiyah Deposit, Bafq District, Journal of African Earth Sciences, 2016, vol. 124, pp. 139–150.CrossRefGoogle Scholar
  34. 34.
    Mishra, P.P., Mohapatra, B.K., and Singh, P.P., Contrasting REE Signatures on Manganese Ores of Iron ore Group in North Orissa, India, Journal of Rare Earths, 2007, vol. 25, pp. 749–758.CrossRefGoogle Scholar
  35. 35.
    Kolonin, G.R. and Shironosova, G.P., Influence of Acidity–Alkalinity of Solutions on REE Distribution during Ore Formation: Thermodynamic Modeling, 2012, vol. 443, no. 5, pp. 613–616.Google Scholar
  36. 36.
    Cao, J., Wu, M., Chen, Y., Hu, K., Bian, L., Wang, L., and Zhang, Y., Trace and Rare Earth Element Geochemistry of Jurassic Mudstones in the Northern Qaidam Basin, Northwest China, Chemie Der Erde–Geochemistry, 2012, vol. 72, no. 3, pp. 245–252.Google Scholar
  37. 37.
    Frietsch, R. and Perdahl, J., Rare Earth Elements in Apatite and Magnetite in Kiruna-Type Iron Ores and some other Iron Ore types, Ore Geology Reviews, 1995, vol. 9, pp. 489–510.CrossRefGoogle Scholar
  38. 38.
    Rajabzadeh, M.A., Hoseini, K., and Moosavinasab, Z., Minerlogical and Geochemical Studies on Apatites and Phosphate Host Rocks of Esfordi deposit, Yazd Province, to Determine the Origin and Geological setting of the Apatire, Journal of Economic Geology, 2015m vol. 6, no. 2.Google Scholar
  39. 39.
    Nakamura, N., Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and Ordinary Chondrites, Geochimica et Cosmochimica Acta, 1974, vol. 38, no. 5, pp. 757–775.CrossRefGoogle Scholar
  40. 40.
    Schock, H.H., Distribution of Rare Earth and Other Trace Elements in Magnetites, Chemical Geology, 1979, vol. 26, pp. 119-133.CrossRefGoogle Scholar
  41. 41.
    Wilson, M., Igneous Petrogenesis: A Global Tectonic Approach, Springer Science & Business Media, 1989.CrossRefGoogle Scholar
  42. 42.
    Chetty, D. and Gutzmer, J., REE Redistribution during Hydrothermal Alteration of Ores of the Kalahari Manganese Deposit, Ore Geology Reviews, 2012, vol. 47, pp. 126–135.CrossRefGoogle Scholar
  43. 43.
    Torab, F.M. and Lehmann, B., Magnetite–Apatite Deposits of Bafq District, Central Iran: Apatite Geochemistry and Monazite Geochronology, Mineralogical Magazine, 2007, vol. 71, pp. 347-363.Google Scholar
  44. 44.
    Abed, A.M., Saffarini, G.A., and Sadaqah, R.M., Spatial Distribution of Uranium and Vanadium in the Upper Phosphorite Member in Eshidiyya Basin, Southern Jordan, Arab. J. Geo Sciences, 2014, vol. 7, pp. 253–271.Google Scholar
  45. 45.
    Moller, P., Parekh, P.P., and Schneider, H.J., The Application of Tb/Ca-Tb/La Abundance Ratios to Problems of Fluorspar Genesis, Mineralium Deposita (Berl.), 1976, vol. 11, pp. 111–116.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Dehghanzadeh Bafghi
    • 1
  • A. H. Kohsary
    • 1
  • F. Mohammad Torab
    • 1
  • H. Mojtahedzadeh
    • 1
  1. 1.Faculty of Mining and Metallurgy, Institution of EngineeringYazd UniversityYazdIran

Personalised recommendations