Advertisement

Journal of Mining Science

, Volume 53, Issue 1, pp 133–140 | Cite as

Numeric Evaluation of Kinematic and Dynamic Characteristics of Mineral Treatment in Disintegrator

  • F. Kh. Urakaev
  • T. S. Yusupov
Mineral Dressing

Abstract

The numerical modeling provides a holistic picture of mechanical treatment and activation of substances in a disintegrator. The authors calculate kinematic and dynamic characteristics of elastic and inelastic collisions in terms of halite, quartz and sulfur particles and disintegrator fingers. The recommendations on selecting optimal treatment conditions for natural minerals and waste material in order to dissociate mineral concretions and for selective activation of minerals are given. The research findings can partly be used for other types of percussion disintegrating devices, in particular, jet mills.

Keywords

Disintegrator quartz halite sulfur treatment kinematics and dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yusupov, T.S., Improvement of Dissociation of Rebellious Minerals, J. Min. Sci., 2016, vol. 52, no. 3, pp. 559–564.CrossRefGoogle Scholar
  2. 2.
    Yusupov, T.S., Baksheeva, I.I., and Rostovtsev, V.I., Analysis of Different-Type Mechanical Effects on Selectivity of Mineral Dissociation, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1248–1253.CrossRefGoogle Scholar
  3. 3.
    Yusupov, T.S., Urakaev F. Kh., and Yusupov, V.P., Prediction of Structural−Chemical Change in Minerals under Mechanical Impact during Milling, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1034–1040.CrossRefGoogle Scholar
  4. 4.
    Yusupov, T.S., Control of Mineral Structure Imperfections as a Way to Improve Ore Flotation, Ekologiya Razvitie Obshchestva, 2015, no. 3(14), pp. 31–37.Google Scholar
  5. 5.
    Pravdina, M.Kh., Vortex Mill to Grind Brittle and Plastic Materials, in Gol’shtik, M.A., Protsessy perenosa v zernistom sloe (Transitions in a Granular Layer), 2 ed., Novosibirsk: Kutateladze Termofiz. Inst. SO RAN, 2005, pp. 315–358.Google Scholar
  6. 6.
    Shevchenko, V.S., Laptev, Yu.V., Shestakova, R.D., Kolonin, G.R. Petrushin, E.I., Savintsev, Yu.P., Yusupov, T.S., and Urakaev F. Kh., Influence of Activating Grinding in a Disintegrator on Opening and Enrichment of Talnakhsky Valleriite-Containing Ore, Khim. Interes. Ustoich. Razv. 2007, vol. 15, nos. 2−1, pp. 215–223.Google Scholar
  7. 7.
    Laptev, Yu.V., Shevchenko, V.S., and Urakaev, F.Kh., Sulphidation of Valleriite in SO2 Solutions, Hydrometallurgy, 2009, vol. 98, nos. 3−4. pp. 201–205.CrossRefGoogle Scholar
  8. 8.
    Bowden, F.P. and Persson, P.A. Deformation, Heating and Melting of Solids in High-Speed Friction, Proc. Roy. Soc. Lond. A., 1961, vol. 260, no. 1303, pp. 433–458.CrossRefGoogle Scholar
  9. 9.
    Kleis, I.R. and Uuemyis, Kh.Kh., Iznosostoikost’ elementov izmel’chitelei udarnogo deistviya (Abrasion Resistance of Percussion Disintegrator Components), Moscow: Mashinostroenie, 1986.Google Scholar
  10. 10.
    Urakaev, F.Kh., Mechanodestruction of minerals at crack tip (Overview): 1. Experiment, Physics and Chemistry of Minerals, 2007, vol. 34, no. 5, pp. 351–361.CrossRefGoogle Scholar
  11. 11.
    Planiol’, R., Vacuum Centrifugal Mill, Proc. Symposion Zerkleinern RuMoRGB, Moscow: Stroiizdat, 1966, pp. 473–483.Google Scholar
  12. 12.
    Urakaev, F.Kh., Zhogin, I.L., and Goldberg, E.L., Process for Particle Treatment in Disintegrator, Izv. SO RAN SSSR, Ser. Khim. Nauki, 1985, no. 8, issue 3, pp. 124–131.Google Scholar
  13. 13.
    Zhogin, I.L. and Urakaev, F.Kh., Particle Motion in a Disintegrator, Izv. SO RAN SSSR, Ser. Khim. Nauki, 1985, no. 11, issue 4, pp. 129–132.Google Scholar
  14. 14.
    Gol’dsmit, V., Udar (Percussion), Moscow: Gosstroiizdat, 1965.Google Scholar
  15. 15.
    Panovko, Ya.G., Vvedenie v teoriyu mekhanicheskogo udara (Introduction into Mechanical Percussion Theory), Moscow: Nauka, 1977Google Scholar
  16. 16.
    Routh, E.J., An Elementary Treatise on Dynamics of a System of Rigid Bodies with Numerous Examples, London: MacMillan and Co., 1877.Google Scholar
  17. 17.
    Urakaev, F.Kh., Mechanism and Kinetics of Mechanochemical Processes, High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, M. Sopicka-Lizer (Ed.), Oxford-Cambridge-New Delhi: Woodhead Publishing Limited, 2010, Chapter 2, pp. 9–44.Google Scholar
  18. 18.
    Urakaev, F.Kh. and Boldyrev, V.V., Mechanism and Kinetics of Mechanochemical Processes in Comminuting Devices. 1. Theory, Powder Technology, 2000, vol. 107, iss. 1−2, pp. 93–107.CrossRefGoogle Scholar
  19. 19.
    Kapitonov, A.M. and Red’kin, V.E., Fiziko-mekhanicheskie svoistva kompozitsionnykh materialov. Uprugie svoistva (Physico-Mechanical Properties of Composites. Elastic Properties), Krasnoyarsk: Sib. Fed. Univer., 2013.Google Scholar
  20. 20.
    Lykov, A.V., Teoriya teploprovodnosti (Thermal Conductivity Theory), Moscow: Vyssh. Shk., 1967.Google Scholar
  21. 21.
    Anderson, O., Definition and Some Applications of Isotropic Elastic Constant Polycrystal Systems, Obtained from Monocrystal Evidence, vol. 3, in Mezon, U., Lattice Dynamics. Physical Acoustics, Moscow: Mir, 1968, pp. 62–121.Google Scholar
  22. 22.
    Voronkova, E.M., Grechushnikov, B.N., Distler, G.I., and Petrov, I.P., Opticheskie materialy dlya infrakrasnoi tekhniki (Optical Materials for Infrared Apparatus), Handbook, Moscow: Nauka, 1965.Google Scholar
  23. 23.
    Batuev, G.S., Golubkov, Yu.V., Efremov, A.K., and Fedosov, A.A., Inzhenernye metody issledovaniya udarnykh protsessov (Engineering Techniques to Study Percussion Processes), Moscow: Mashinostroenie, 1969.Google Scholar
  24. 24.
    Shuvalov, L.A., Urusovskaya, A.A., Zheludev, I.S., et al., Mechanical Properties of Crystals, Sovremennaya kristallografiya (Modern Crystalography), vol. 4: Physical Properties of Crystals, Moscow: Nauka, 1981, pp. 47–152.Google Scholar
  25. 25.
    Hillig, W.B. Strength of Bulk Fused Quartz, J. Appl. Phys., 1961, vol. 32. iss. 4, pp. 741.CrossRefGoogle Scholar
  26. 26.
    Gyulai, Z., Festigkeits-und Plastizitätseigenschaften von NaCl-Nadelkristallen, Zeitschrift für Physik, 1954, vol. 138, iss. 3−4, pp. 317–321.CrossRefGoogle Scholar
  27. 27.
    Urakaev, F.Kh. and Boldyrev V. V., Mechanism and Kinetics of Mechanochemical Processes in Comminuting Devices. 2. Applications of the Theory, Experiment, Powder Technology, 2000, vol. 107, issue 3, pp. 197–206.CrossRefGoogle Scholar
  28. 28.
    Urakaev, F.Kh., Bulavchenko, A.I., Uralbekov, B.M., Massalimov, I.A., Tatykaev, B.B., Bolatov, A.K., Dzharlykasimova, D.N., and Burkitbaev, M.M., Mechanochemical Synthesis of Colloid Sulfur Particles in System Na2S2O3−H2(C4H4O4)−Na2SO3, Kolloid Zh., 2016, vol. 78, no. 2, pp. 193–202.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of ScienceNovosibirskRussia

Personalised recommendations