Advertisement

Journal of Mining Science

, Volume 53, Issue 1, pp 117–125 | Cite as

Pulsed Linear Solenoid Actuator for Deep-Well Vibration Source

Science of Mining Machines
  • 15 Downloads

Abstract

Aimed at improving efficiency of non-explosive vibroseis method, the new concept of using a solenoid impact actuator enables essential increase in useful mechanical work with the limited external diameter. The results of the finite element modeling of magnetic field are reported. The authors have found the force and energy characteristics of the actuator and the prospects for its application in a casing with the external diameter limited to 120 mm.

Keywords

Deep-well vibration source solenoid actuator finite element modeling of magnetic field useful mechanical work force characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oparin, V.N., Simonov, B.F., Yushkin, V.F., Vostrikov, V.I., Nazarov, L.A., and Pogarsky, Yu.V., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Framework of Oil Recovery Enhancement in Vibration Wave Technologies), Novosibirsk: Nauka, 2010.Google Scholar
  2. 2.
    Serdyukov, S.V. and Kurlenya, M.V., Mechanism of Oil Production Stimulation by Low-Intensity Seismic Fields, Acoustical Physics, 2007, vol. 53, no. 5, pp. 618–628.CrossRefGoogle Scholar
  3. 3.
    Oparin, V.N. and Simonov, B.F., Nonlinear Deformation-Wave Processes in the Vibrational Oil Geotechnologies, J. Min. Sci., 2010, vol. 46, no. 2, pp. 95–112.CrossRefGoogle Scholar
  4. 4.
    Savchenko, A.V., Simonov, B.F., and Cherednikov, E.N., Effect of Fluid Pulses on Bottom-Hole Area of Productive Stratum, J. Fundament. Appl. Min. Sci., 2014, vol. 1, no. 1, pp. 285–288.Google Scholar
  5. 5.
    Simonov, B.F., Serdyukov, S.V., and Cherednikov, E.N., Full-Scale Trial Results on Oil Recovery Enhancement by Seismic Vibration Stimulation, Neft. Khoz., 1996, no. 5.Google Scholar
  6. 6.
    Putintsev, N.N., Ryashentsev, N.P., et al., Mathematical Model of an Electromechanical System of Unbalance Drive for a Vibration Source, J. Min. Sci., 1983, vol. 19, no. 3, pp. 506–509.Google Scholar
  7. 7.
    Yuhskin, V.F. and Makaryuk, N.V., Analysis of Dynamics of an Electromechanical System in a Vibration Source, Avtomatizatsiya elektromekhanicheskikh sistem (Automation of Electromechanical Systems), Novosibirsk: NETI, 1983, pp. 106–110.Google Scholar
  8. 8.
    Chichinin, I.S., Vibratsionnoe izluchenie seismicheskikh voln (Vibrational Emission of Seismic Waves), Moscow: Nedra, 1984.Google Scholar
  9. 9.
    Cherednikov, E.N. and Savchenko, A.V., Operational Dynamics of Pulse-Generating Deep-Well Oil Pump for Wave Stimulation of Productive Stratum, Inter-Expo GeoSibir-2007 Proc., 2007, vol. 5, pp. 249–251.Google Scholar
  10. 10.
    Neiman, V.Yu., Effectivization of Operations and Selection of Structural Layouts for Electromagnetic Percussive Machines, Avtomatizirovannye elektromekhanicheskie sistemy(Automated Electromechanical Systems), Novosibirsk: NGTU, 2004, pp. 155–170.Google Scholar
  11. 11.
    Neiman, V.Yu., Integrated Linear Electromagnetic Motors for Pulsed Technologies, Russian Electrical Engineering, 2003, vol. 74, no. 9, pp. 30–35.Google Scholar
  12. 12.
    Neiman, L.A. and Neiman, V.Yu., Linear Synchronous Electromagnetic Machines for Low-Frequency Impact Technologies, Russian Electrical Engineering, 2014, vol. 85, no. 12, pp. 752–756.CrossRefGoogle Scholar
  13. 13.
    Moshkin, V.I. and Ugarov, G.G., Efficiency of Enegry and Dynamics of Single-Winding Linear Electromechanical Actuators with the Recuperator Spring, Vestn. SGTU, 2012, no. 2, pp. 130–135.Google Scholar
  14. 14.
    Ivashin, V.V., Kudinov, A.K., and Pevchev, V.P., Electromagnetic Drives for Pulse-Generating and Vibration Pulse-Generating Technologies, Izv. vuzov, Elekromekhanika, 2012, no. 1, pp. 72–75.Google Scholar
  15. 15.
    Pevchev, V.P., Principal Dimensions of the Short-Stroke Electromagnetic Motor for a Seismic Wave Generator, J. Min. Sci., 2009, vol. 45, no. 4, pp. 372–381.CrossRefGoogle Scholar
  16. 16.
    Simonov, B.F., Kadyshev, A.I., and Neiman, V.Yu., Static Parameters of Long-Stroke Electromagnets for Hammers, Transport: Nauka, Tekh., Upravl., 2011, no. 12, pp. 30–32.Google Scholar
  17. 17.
    Ugarov, G.G. and Neiman, V.Yu., Analysis of the Characteristics of Electromagnetic Percussion Machinery, J. Min. Sci., 1996, vol. 32, no. 2, pp. 138–144.CrossRefGoogle Scholar
  18. 18.
    Neiman, V.Yu., Dynamic Energy Transformation of Linear Electromagnetic Machines with Preliminary Magnetic-Energy Storage, Russian Electrical Engineering, 2003, vol. 74, no. 2, pp. 41–47.Google Scholar
  19. 19.
    Malov, A.G., Ryashentsev, N.P., et al., Elektromagnitnye moloty (Electromagnetic Hammers), Novosibirsk: Nauka, 1968.Google Scholar
  20. 20.
    Rayshentsev, N.P. and Ryashentsev, V.N., Elektromagnitnyi privod lineinykh mashin (Electromagnetic Drive of Linear Machines), Novosibirsk: Nauka, 1985.Google Scholar
  21. 21.
    Neiman, V.Yu., Neiman, L.A., Petrova, A.A., Skotnikov, A.A., and Rogova, O.V., Taking into Account General Dimensions When Selecting Electromagnet Based on Design Factor, Elektrotekhnika, 2011, no. 6, pp. 50–53.Google Scholar
  22. 22.
    Moshkin, V.I., Neiman, V.Yu., and Ugarov, G.G., Impul’snye lineinye elektromagnitnye dvigateli (Impulse Linear Electromagnetic Gears), Kurgan: KGU, 2010.Google Scholar
  23. 23.
    Rusakov, A.D., Calculation of Induction and Traction Force of an Electromagnetic Percussive Gear, Elektromagnitnye mashiny udarnogo deistviya (Electromagnetic Percussive Machines), Novosibirsk: IGD SO AN SSSR, 1978, pp. 8–18.Google Scholar
  24. 24.
    Bul’, O.B., Metody rascheta magnitnykh sistem elektricheskikh apparatov: Magnitnye tsepi, polya i programma FEMM (Methods to Calculate Magnetic Systems of Electric Apparatuses: Magnetic Circuits, Fields of FEMM Program), Moscow: Akademiya, 2005.Google Scholar
  25. 25.
    Petrova, A.A. and Neiman, V.Yu., FEMM Modeling of Magnetic Field to Calculate Traction Characteristics of Electromagnetic DC Drives, Sb. Nauch. Tr. NGTU, 2008, no. 2, pp. 101–108.Google Scholar
  26. 26.
    Neiman, V.Yu., Neiman, L.A., and Petrova, A.A., Calculation of Efficiency of DC Electromagnet for Mechanotronic Systems, IFOST 2008: Proc. 3rd Int. Forum on Strategic Technology, Novosibirsk–Tomsk, 2008, pp. 452–454.CrossRefGoogle Scholar
  27. 27.
    Neiman, L.A. and Neiman, V.Yu., Conductive Method Application to Taking into Account Lateral Magnetic Attraction of an Asymmetrical Magnet, Vestn. Irkutsk. GTU, 2015, no. 2 (97), pp. 214–218.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • B. F. Simonov
    • 1
  • V. Yu. Neiman
    • 2
  • A. S. Shabanov
    • 2
  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations