Journal of Mining Science

, Volume 53, Issue 1, pp 49–52 | Cite as

Estimation of Stress State in Rocks and Geomaterials

  • V. V. Seredin
  • A. S. Khrulev
  • M. V. Pushkareva


Roughness of the main fracture surface is an assessment criterion for stress state of geomaterials for the quantitative connection has been found between the crack roughness and stress state of geomaterials. Roughness reduces with an increase in the maximum normal stresses in the zone of failure (the area of the maximum shear stresses). Based on this regularity, the method has been developed to assess stresses using the crack surface roughness in geomaterials.


Main fracture surface roughness stress state geomaterials rocks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oliver, D.E., Stress Pattern Analysis by Thermal Emission, Handbook on Experimental Mechanics, A.S. Kobayashi (Ed.), Prentice-Hall, 1986.Google Scholar
  2. 2.
    Parkus, H., Instationäre Wärmespannungen, Springer-Verlag, 1959.CrossRefGoogle Scholar
  3. 3.
    Amitrano, D., Variability in the Power-Law Distributions of Rupture Events, Eur. Phys. J. Special Topics, 2012, vol. 205, no. 1, pp. 199–215.CrossRefGoogle Scholar
  4. 4.
    Lei, X. and Satoh, T., Indicators of Critical Point to Rock Failure Inferred from Pre-Failure Damage, Tectonophys., 2007, vol. 431, no. 1–4, pp. 97–111.CrossRefGoogle Scholar
  5. 5.
    Seredin, V.V., Analysis of Temperature in the Zone of Fracture in Rocks, Fund. Issled., 2014, no. 9, part 12, pp. 2713–2717.Google Scholar
  6. 6.
    Seredin, V.V., Leibovich, L.O., Pushkareva, M.V., Kopylov, I.S., and Khrulev, A.S., Evolution of Fracture Surface Morphology in Rock, J. Min. Sci., 2013, vol. 49, no. 3, 409–412.CrossRefGoogle Scholar
  7. 7.
    Kosykh, V.P., Displacement of Discontinuity Distribution in Granular Materials under Confined-Space Shearing, J. Min. Sci., 2010, vol. 46, no. 3, pp. 234–240.CrossRefGoogle Scholar
  8. 8.
    Bobryakov, A.P., Stick-Slip Mechanism in a Granular Medium, J. Min. Sci., 2010, vol. 46, no. 6, pp. 600–605.CrossRefGoogle Scholar
  9. 9.
    Kuksenko, V.S., Makhmudov, Kh.V., Mansurov, V.A., Sultanov, U., Rustamova, M.Z., Changes in Structure of Natural Heterogeneous Materials under Deformation, J. Min., Sci., 2009, vol. 45, no. 4, pp. 355–358.CrossRefGoogle Scholar
  10. 10.
    Enikolopyan, N.S., Mkhitaryan, A.A., anmd Karagezyan, A.S., Ultrarapid Reactions of Decomposition in Solids under Pressure, Dokl. AN SSSR, 1986, vol. 288, no. 3, pp. 657–660.Google Scholar
  11. 11.
    Chikov, B.M., Kargapolov, S.A., and Ushakov, G.D., Experimental Stress-Conversion of Pyroxenite, Geolog. Geofiz., 1989, no. 6, pp. 75–80.Google Scholar
  12. 12.
    Molchanov, V.I., Selezneva, O.G., and Osipov, S.L., Mechanoactivation of a Mineral Substance as the Pre-Condition of Stress-Transformations in Lineament Zones, Struktura lineamentnykh zon stress-morfizma (Structure of Lineament Zones of Stress-Morphism), Novosibirsk: Nauka, 1990.Google Scholar
  13. 13.
    Oparin, V.N., Kiryaeva, T.A., Gavrilov, Yu.V., Shutilov, R.A., Kovchantsev, A.P., Tanaino, A.S., Efimov, V.P., Astrakhantsev, I.V., and Grenev, I.V., Interaction of Geomechanical and Physicochemical Process in Kuzbass Coal, J. Min. Sci., 2014, vol. 50, no. 2, pp. 191–214.CrossRefGoogle Scholar
  14. 14.
    Stavrogin, A.N. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Seredin
    • 1
  • A. S. Khrulev
    • 1
  • M. V. Pushkareva
    • 1
  1. 1.Perm State National Research UniversityPermRussia

Personalised recommendations