Advertisement

Journal of Mining Science

, Volume 53, Issue 1, pp 21–33 | Cite as

Strain Gradient Model of Zonal Disintegration of Rock Mass near Deep-Level Tunnels

  • C. Z. Qi
  • K. R. Li
  • J. P. Bai
  • A. I. Chanyshev
  • P. Liu
Geomechanics

Abstract

This paper presents one strain gradient model of zonal disintegration of rock mass near deep level tunnel. The governing equations and boundary conditions of the model are established. Numerical methods (quasi-Newton method and shooting method) are adopted to solve the obtained fourth-order equilibrium equations with higher order boundary conditions in terms of displacement. The stress field in elastic and plastic zones is obtained. The effects of model parameters on stresses distribution in surrounding the tunnel rock mass are examined. The necessary conditions for the formation of zonal disintegration are elucidated.

Keywords

Deep-level tunnel rock mass zonal disintegration strain gradient model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shemyakin, E.I., Fisenko, G.N., Kurlenya, M.V., Oparin, V.N., et al., The Rock-Mass Zone Disintegration near Deep Level Mining Opening. Part I: Data of In Situ Observations, J. Min. Sci., 1986, vol. 22, no. 3, pp. 3–13.Google Scholar
  2. 2.
    Tan, Y.L., Ning, J.G., and Li, H.T., In Situ Explorations on Zonal Disintegration of Roof Strata in Deep Coalmines, Int J. Rock Mech. Min. Sci., 2012, vol. 49, pp. 113–124.CrossRefGoogle Scholar
  3. 3.
    Shemyakin, E.I., Fisenko, G.N., Kurlenya, M.V., Oparin, V.N., et al., The Rock-Mass Zone Disintegration near Deep Level Mining Opening. Part II: The Fracture of Rock in Models From Equivalent Materials, J. Min. Sci., 1986, vol. 22, no. 4, pp. 3–15.Google Scholar
  4. 4.
    Shemyakin, E.I., Fisenko, G.N., Kurlenya, M.V., Oparin, V.N., et al., The Rock-Mass Zone Disintegration near Deep Level Mining Opening. Part III: Theoretical Representation, J. Min. Sci., 1987, vol. 23, no. 1, pp. 3–8.Google Scholar
  5. 5.
    Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., Reva, V.N., et al., The Rock-Mass Zone Disintegration near Deep Level Mining Opening. Part IV: Practical Application, J. Min. Sci., 1989, vol. 25, no. 4, pp. 3–9.Google Scholar
  6. 6.
    Kurlenya, M.V., Oparin, V.N., Bobrov, G.F., et al., On Splitting Effect in Zones of Supporting Pressure, J. Min. Sci., 1995, vol. 31, no. 5, pp. 3–11.Google Scholar
  7. 7.
    Gu, J.C., Gu, L.Y., and Chen, A.M., Model Test Study on Mechanism of Layered Fracture within Surrounding Rock of Tunnels in Deep Stratum, Chinese Journal of Rock Mechanics and Engineering, 2008, vol. 27, no. 5, pp. 433–4384.Google Scholar
  8. 8.
    Zhang, Q.Y., Chen, X.G., Lin, B., et al., Study of 3D Geomechanical Model Test of Zonal Disintegration of Surrounding Rock of Deep Tunnel, Chinese J Rock Mech. Eng., 2009, vol. 28, no. 9, pp. 1757–1766.Google Scholar
  9. 9.
    Chanyshev, A.I., On Problem of Fracture of Deformable Media. Part I: Basic Equations, J. Min. Sci., 2001, vol. 37, no. 2, pp. 273–288.CrossRefGoogle Scholar
  10. 10.
    Chanyshev, A.I., On Problem of Fracture of Deformable Media. Part. II: Discussion of Results of Analytical Solutions, J. Min. Sci., 2001, vol. 37, no. 3, pp. 392–400.CrossRefGoogle Scholar
  11. 11.
    Gusev, M.A. and Paroshin, A.A., Non-Euclidian Model of Rock-Mass Zone Disintegration near Underground Mining Opening, Appl. Mech. and Tech. Phys., 2001, Vvl. 42, no. 1, pp. 147–156.Google Scholar
  12. 12.
    Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., et al., Zonal’naya dezintegratsiya gornykh porod i ustoichivost’ podzemnykh vyrabotok (Zonal Disintegration of Rock Mass and Stability of Underground Openings), Novosibirsk: SO RAN, 2008.Google Scholar
  13. 13.
    Jirasek, M. and Rolshoven, S., Localization Properties of Strain Softening Gradient Plasticity. Part I: Strain Gradient Theories, Int. J. Solids Struct., 2009, vol. 46, pp. 2225–2238.CrossRefGoogle Scholar
  14. 14.
    Jirasek, M. and Rolshoven, S., Localization Properties of Strain Softening Gradient Plasticity. Part II: Theories with Gradients of Internal Variables, Int. J. Solids Struct., 2009, vol. 46, pp. 2239–2254.CrossRefGoogle Scholar
  15. 15.
    Toupin, R.A., Elastic Materials with Couple Stresses, Arch. Ration Mech. Anal., 1962, vol. 11, no. 1, pp. 385–414.CrossRefGoogle Scholar
  16. 16.
    Mindlin, R.D., Second Gradient of Strain and Surface Tension in Linear Elasticity, Int. J. Solids Struct., 1965, vol. 28, pp. 845–857.Google Scholar
  17. 17.
    Eshel, N. and Rosenfeld, G., Axi-Symmetric Problems in Elastic Materials of Grade two, J. Franklin Inst., 1975, vol. 299, no. 1, pp. 43–51.CrossRefGoogle Scholar
  18. 18.
    Fleck, N.A. and Hutchinson, J.W., Strain Gradient Plasticity, Advances in Applied Mechanics, 1997, vol. 33, pp. 295–361.CrossRefGoogle Scholar
  19. 19.
    Gurtin, M.E., A Gradient Theory of Single Crystal Visco-Plasticity that Accounts for Geometrically Necessary Dislocations, J. Mech. Phys. Solids, 2002, vol. 50, pp. 5–32.CrossRefGoogle Scholar
  20. 20.
    Aifantis, E.C., On the Microstructural Origin of Certain Inelastic Models, J. Eng. Mater. Tech., 1984, vol. 106, pp. 326–330.CrossRefGoogle Scholar
  21. 21.
    Aifantis, E.C., Pattern Formation in Plasticity, Int. J. Eng. Sci., 1995, vol. 33, pp. 2161–2178.CrossRefGoogle Scholar
  22. 22.
    Polizzotto, C., Unified Thermodynamic Framework for Nonlocal/Gradient Continuum Theories, Eur. J. Mech. A/Solids, 2003, vol. 17, no. 3, pp. 651–668.CrossRefGoogle Scholar
  23. 23.
    Abu Al-Rub, R.K., Voyiadjis, G.Z., and Bammann, J.B., A Thermodynamic Based Higher-Order Gradient Theory for Size Dependent Plasticity, Int. J. Solids Struct., 2007, vol. 44, pp. 2888–2923.CrossRefGoogle Scholar
  24. 24.
    Fleck, N.A. and Willis, J.R., A Mathematical Basis for Strain-Gradient Plasticity Theory. Part II: Tensorial Plastic Multiplier, J. Mech. Phys. Solids, 2009, vol. 57, pp. 1045–1057.CrossRefGoogle Scholar
  25. 25.
    Wang, M.Y., Qi, C.Z., Qian, Q.H., and Chen, J.J., One plastic Gradient Model of Zonal Disintegration of Rock Mass near Deep Level Tunnels, J. Min. Sci., 2012, vol. 48, no. 1, pp. 54–62.CrossRefGoogle Scholar
  26. 26.
    Ilyushin, A.A., Plastichnost’ (Plasticity), Moscow–Leningrad: OGIZ, 1948.Google Scholar
  27. 27.
    Baklashov, I.V. and Kartozia, B.A., Mekhanika podzemnykh sooruzhenii i konstruktsiui krepei (Mechanics of Underground Stuctures and Support), Moscow: Nedra, 1984.Google Scholar
  28. 28.
    Zhao, J.D., Sheng, D.C., and Sloan, S.W., Cavity Expansion of a Gradient-Dependent Solid Cylinder, Int. J. Solids Struct., 2007, vol. 44, pp. 4342–4368.CrossRefGoogle Scholar
  29. 29.
    Keller, H.B., Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell Pub. Co., Waltham, Massachusetts, 1968, pp. 61–68.Google Scholar
  30. 30.
    Chambon, R. and Moullet, J.C., Uniqueness Studies in Boundary Value Problems Involving Some Second Gradient Models, Comp. Methods Appl. Mech. Eng., 2004, vol. 193, pp. 2771–2796.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • C. Z. Qi
    • 1
  • K. R. Li
    • 1
    • 2
  • J. P. Bai
    • 3
  • A. I. Chanyshev
    • 4
  • P. Liu
    • 1
  1. 1.Beijing Future Urban Design High-Tech Innovation Center and Innovation Team of Civil and Underground Engineering of Ministry of Education of P.R.ChinaBeijing University of Civil Engineering and ArchitectureBeijingChina
  2. 2.Defense Engineering InstitutePLA University of Science and TechnologyNanjingP R China
  3. 3.Faculty of Computing, Engineering & ScienceUniversity of South WalesPontypriddUK
  4. 4.Chinakal Institute of Mining, B, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations