Journal of Mining Science

, Volume 53, Issue 1, pp 12–20 | Cite as

Modeling Deformation Processes in Self-Stressed Rock Specimens



The authors use mathematical model of structurally inhomogeneous rocks to describe the property of rocks to accumulate and release potential elastic energy. The finite element algorithm and bundled software are developed to solve plane boundary-value geomechanical problems. The article presents calculations of deformation of self-stress rock specimens. It is shown that the deformation curve depends both on the elastoplastic properties of the specimens and on their natural self-balanced stresses. Depending on sign, the stresses can either increase or decrease the limit load under which the specimens fail.


Rock internal structure natural self-balanced stresses modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Deformation Mechanism of Granular Material under Shearing, J. Min. Sci., 1974, vol. 10, no. 3, pp. 130–133.Google Scholar
  2. 2.
    Sadovsky, M.A., Natural Lumpiness of Rocks, DAN SSSR, 1979, vol. 247, no. 4, pp. 829–832.Google Scholar
  3. 3.
    Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovniya massivov gornykh porod (Deformation Dynamics in Rock Mass), Moscow: AKADEMKNIGA, 2003.Google Scholar
  4. 4.
    Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Shemyakin, E.I., Some Features of Rock Mass Response to Near-Range Blasting, DAN SSSR, 1987, vol. 293, no. 1, pp. 67–70.Google Scholar
  5. 5.
    Adushkin, V.V., Garnov, V.V., Kurlenya, M.V., Oparin, V.N., and Revuzhenko, A.F., Alternating Response f Rocks to Dynamic Impacts, DAN, 1992, vol. 323, no. 2, pp. 263–269.Google Scholar
  6. 6.
    Adushkin, V.V., Kocharyan, G.G., and Ostapchuk, A.A., Parameters Governing Energy Released under Dynamic Relief in a Rock Mass Area, DAN, 2016, vol. 467, no. 1, pp. 86–90.Google Scholar
  7. 7.
    Rebetsky, Yu.L., Estimation of the Earth’s Daily Rotation Influence on Stress State of the Continental Crust, DAN, 2016, vol. 469, no. 2, pp. 230–234.Google Scholar
  8. 8.
    Organization Standard STO 36554501-019-2009, Moscow: NITs Stroitel’stvo, 2010.Google Scholar
  9. 9.
    Moroz, A.I., Samonapryazhennoe sostoyanie gornykh porod (Self-Stressed State of Rocks), Moscow: MGGU, 2004.Google Scholar
  10. 10.
    Stavrogin, A.N. and Shirkes, O.A., Aftereffects in Rocks Caused by Preexisting Irreversible Deformations, J. Min. Sci., 1986, vol. 22, no. 4, pp. 235–244.Google Scholar
  11. 11.
    Goryainov, P.M. and Davidenko, I.V., Tectono-Lacunar Effect in Rocks and Ore Bodies—A Significant Geodynamic Phenomenon, DAN SSSR, 1979, vol. 247, no. 5, pp. 1212–1215.Google Scholar
  12. 12.
    Ponomarev, V.S., Problems of Energy-Active Geological Medium Investigation, Geotektonika, 2011, no. 2, pp. 66–75.Google Scholar
  13. 13.
    Peng, Z. and Gomberg, J., An Integrated Perspective of the Continuum between Earthquakes and Slow- Slip Phenomena, Nature Geoscience, 2010, no. 3, pp. 599–607.CrossRefGoogle Scholar
  14. 14.
    Brune, J.N., Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. of Geophysical Research, 1970, vol. 75, no. 26, pp. 4997–5009.CrossRefGoogle Scholar
  15. 15.
    Onami, M., Ivasimidzu, S., Genka, K., Siodzava, K., and Tanaka, K., Vvedenie v mikromekhaniku (Introduction to Micromechanics), Moscow: Metallurgiya, 1987.Google Scholar
  16. 16.
    Revuzhenko, A.F., Mekhanika uprogoplasticheskikh sred i nestandartnyi analiz (Mechanics of Elastoplastic Media and Nonstandard Analysis), Novosibirsk: NGU, 2000.Google Scholar
  17. 17.
    Revuzhenko, A.F., Matematicheskii analiz funktsii nearkhimedovoi peremennoi. Spetsializirovannyi matematicheskii apparat dlya opisaniya strukturnykh urovnei geosredy (Mathematical Analysis of Functions of Non-Archimedean Variable: Application-Specific Mathematical Tool for Description of Structural Levels in a Geomedium), Novosibirsk: Nauka, 2012.Google Scholar
  18. 18.
    Revuzhenko, A.F., Applications of Non-Archimedean Analysis in the Block Hierarchical Rock Mass Mechanics, J. Min. Sci., 2016, vol. 52, no. 5, pp. 842–850.CrossRefGoogle Scholar
  19. 19.
    Lavrikov, S.V., Mikenina, O.A., and Revuzhenko, A.F., Rock Mass Deformation Modeling Using the Non-Archimedean Analysis, J. Min. Sci., 2008, vol. 44, no. 1, pp. 1–14.CrossRefGoogle Scholar
  20. 20.
    Lavrikov, S.V., Mikenina, O.A., Revuzhenko, A.F., and Shemyakin, E.I., Concept of Non-Archimedean Multiple Scale Space and Models of Plastic Media Having Structure, Fiz. Mezomekh., 2008, vol. 11, no. 3, pp. 45–60.Google Scholar
  21. 21.
    Lavrikov, S.V., Mikenina, O.A., and Revuzhenko, A.F., A Non-Archimedean Number System to Characterize the Structurally Inhomogeneous Rock Behavior nearby a Tunnel, J. of Rock Mechanics and Geotechnical Engineering, 2011, no. 3(2), pp. 153–60.CrossRefGoogle Scholar
  22. 22.
    Lavrikov, S.V. and Revuzhenko, A.F., Deformation of Geo-Medium with Considering for Internal Self-Balancing Stresses, AIP Conference Proceedings, 2016, DOI: 10.1063/1.4966423.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations