Journal of Mining Science

, Volume 53, Issue 1, pp 1–11 | Cite as

New Approach to Monitoring Induced Earthquakes

  • V. V. Adushkin
  • S. B. Kishkina
  • G. G. Kocharyan


The generalized observations over hypocenters of the strongest mining-induced events have shown that relative deformation occurs as movement along the existing faults. From the experimental evidence, transition of a section of a fault to meta-stable state goes with the decrease of its dynamic shearing stiffness. The alteration of the mechanical properties starts long before macroscopic movement of the fault surfaces is recorded. This effect is detectable using instruments and can be used as a foundation for a new approach to monitoring of induced earthquakes.


Induced seismicity induced earthquakes fault stiffness seismic energy seismic moment fault zones monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L.V., Kinetics of Seismic Emission in Coal Mines in Kuzbass, J. Min. Sci., 2013, vol. 49, no. 4, pp. 521–536.CrossRefGoogle Scholar
  2. 2.
    Ellsworth, W.L., Injection-Induced Earthquakes, Science, 2013, vol. 341, no. 6142. Scholar
  3. 3.
    Adushkin, V.V., Mining-Induced Earthquakes, Fiz. Zemli, 2016, no. 2, pp. 22–44.Google Scholar
  4. 4.
    Shemyakin, E.I., Kurlenya, M.V., and Kulakov, G.I., Classification of Rock Bursts, J. Min. Sci., 1986, vol. 22, no. 5, pp. 329–336.Google Scholar
  5. 5.
    Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., et al., Phenomenon of Zonal Rock Mass Disintegration around Underground Openings, DAN SSSR, 1986, vol. 289, no. 5, pp. 1088–1094.Google Scholar
  6. 6.
    Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., Reva, V.N., Glushikhin, F.P., and Rozenbaum, M.A., USSR discovery no. 400, Byull. Izobret., 1992, no. 1.Google Scholar
  7. 7.
    Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Destruktsiya zemnoi koru i protsessy samoorganizatsii v oblasti sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization of the Earth Crust in the Areas of the Strong Industrial Impact), Novosibirsk: SO RAN, 2012.Google Scholar
  8. 8.
    Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia, J. Min. Sci., Part I: 2012, vol. 48, no. 2, pp. 203−222; Part II: 1013, vol.49, no. 2, pp. 175−209; Part III: 2014, vol. 50, no. 4, pp. 623−645; Part IV: 2016, vol. 51, no. 1, pp. 1−35.CrossRefGoogle Scholar
  9. 9.
    Ruzhich, V.V, Levina, E.A., and Vostrikov, V.I., Rockburst Prediction in Underground Mines, Izv. SO Sek. Nauk Zemle RAEN, 2009, no. 2(35), pp. 113–125.Google Scholar
  10. 10.
    Ruzhich, V.V., Chernykh, E.N., and Levina, E.A., Methods to Reduce Occurrences of Dynamic Events in Deep Mine Workings, 2nd Russia-China Conf. Proc. Nonlinear Geomechanical-Geodynamic Processes in Deep Mining, Novosibirsk: IGD SO RAN, 2012, pp. 246–251.Google Scholar
  11. 11.
    Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost’—indutsirovannaya i triggernaya (Induced and Triggered Seismicity), Moscow: IDG RAN, 2015.Google Scholar
  12. 12.
    Richardson, E. and Jordan, T.H., Seismicity in Deep Gold Mines of South Africa: Implications for Tectonic Earthquakes, Bull. Seismol. Soc. Amer., 2002, vol. 92, no. 5, pp. 1766–1782.CrossRefGoogle Scholar
  13. 13.
    Gibowicz, S.J. and Kijko, A., An Introduction to Mining Seismology, San Diego, Academic Press Inc., 1994.Google Scholar
  14. 14.
    Stec, K., Characteristics of Seismic Activity of the Upper Silesian Coal Basin in Poland, Geophys., J. Int., 2007, vol. 168, pp. 757–768. DOI: 10.1111/j.1365-246X.2006.03227.x.CrossRefGoogle Scholar
  15. 15.
    Malovichko, A.A. and Malovichko, D.A., Estimation of Force and Deformation Characteristics of Sources of Seismic Events, Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems for Seism–Deformation Monitoring of Induced Earthquakes), N.N. Mel’nikov (Ed.), Novosibirsk, 2010.Google Scholar
  16. 16.
    Lovchikov, A.V. and Asming, V.E., Induced Seismicity of Lovozero Rock Mass. Modern Methods of Seismological Data Processing and Interpretation, Proc. 6th Int. Seism. Sch., 2011, pp. 186–189.Google Scholar
  17. 17.
    Besedina, A.N., Kishkina, B., and Kocharyan, G.G., Effect of Deformation Properties of Discontinuities on Sources of Mining-Induced Seismicity in Rocks. Part I: In Situ Observations, J. Min. Sci., 2015, vol. 51, no. 4, pp. 707–717.CrossRefGoogle Scholar
  18. 18.
    Sobolev, G.A, Vettegren’, V.I., Ruzhich, V.V., Kireenkova, S.M., Smul’skaya, A.I., Mamalimov, R.I., and Kulik, V.B., Crystals of Slickensided Surface from the Seismic Dislocation Zone, Geofiz. Issled., 2015, vol. 16, no. 4, pp. 5–14.Google Scholar
  19. 19.
    Mel’nikov, N.N. (Ed.), Seismichnost’ pri gornykh rabotakh (Seismicity during Mining), Apatity: KNTs RAN, 2002.Google Scholar
  20. 20.
    Domański, B. and Gibowicz, S., Comparison of Source Parameters Estimated in the Frequency and Time Domains for Seismic Events at the Rudna Copper Mine, Poland, Acta Geophys., 2008, vol. 56, pp. 324–343.CrossRefGoogle Scholar
  21. 21.
    Gibowicz, S., Young, R., Talebi, S., and Rawlence, D., Source Parameters of Seismic Events at the Underground Research Laboratory in Manitoba, Canada: Scaling Relations for Events with Moment Magnitude Smaller than 2. BSSA, 1991, vol. 81, pp. 1157–1182.Google Scholar
  22. 22.
    Yamada, T., Mori, J.J., Ide, S., Abercrombie, R.E., Kawakata, H., Nakatani, M., Iio, Y., and Ogasawara, H., Stress Drops and Radiated Seismic Energies of Microearthquakes in a South African Gold Mine, J. Geophys. Res., 2007, vol. 112. B03305. DOI: 10.1029/2006JB004553.CrossRefGoogle Scholar
  23. 23.
    Oye, V., Bungum, H., and Roth, M., Source Parameters and Scaling Relations for Mining-Related Seismicity within the Pyhäsalmi Ore Mine, Finland, BSSA, 2005, vol. 95(3), pp. 1011–1026.Google Scholar
  24. 24.
    Kwiatek, G., Plenkers, K., Dresen, G., et al., Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 6, pp. 2592–2608.CrossRefGoogle Scholar
  25. 25.
    Heesakkers, V., Murphy, S., Lockner, D.A., and Reches, Z., Earthquake Rupture at Focal Depth, P. II. Mechanics of the 2004M2.2 Earthquake along the Pretorius Fault, Tautona Mine, South Africa, Pure and Applied Geophysics, 2011, vol. 168, pp. 2427–2449. DOI: 10.1007/s00024-011-0355-6.CrossRefGoogle Scholar
  26. 26.
    Heesakkers, V., Murphy, S., and Reches, Z., Earthquake Rupture at Focal Depth, P. I. Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa, Pure Appl. Geophys., 2011, vol. 168, pp. 2395–2425. DOI: 10.1007/s00024-011-0354-7.CrossRefGoogle Scholar
  27. 27.
    Marcak, H. and Mutke, G., Seismic Activation of Tectonic Stresses by Mining, J. Seismol., 2013, vol. 17, pp. 1139–1148. DOI: 10.1007/s10950-013-9382-3.CrossRefGoogle Scholar
  28. 28.
    Adushkin, V.V., Kocharyan, G.G., and Novikov, V.A., Modes of Movement along Faults, Fiz. Zemli, 2016, no. 5, pp. 13–24.Google Scholar
  29. 29.
    Budkov, A.M. and Kocharyan, G.G., Experimental Studies of Different Modes of Block Sliding along Interface. Part III: Numerical Modeling, Phys. Mesomech., 2017, vol. 29, no. 2, pp. 203–208.CrossRefGoogle Scholar
  30. 30.
    Goodman, R., Introduction to Rock Mechanics, 2nd Ed., Wiley, 1989.Google Scholar
  31. 31.
    Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Deformation Dynamics of Blocky Rock Masses), Moscow: Akademkniga, 2003.Google Scholar
  32. 32.
    Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., and Elsworth, D., Seismicity Triggered by Fluid Injection-Induced Aseismic Slip, Science, 2015, vol. 348, pp. 1224–1226.CrossRefGoogle Scholar
  33. 33.
    Rasskazov, I.Yu., Saksin, B.G., Petrov, V.A., and Prosekin, B.A., Geomechanics and Seismicity of the Antey Deposit Rock Mass, J. Min. Sci., 2012, vol. 48, no. 3, pp. 405–412.CrossRefGoogle Scholar
  34. 34.
    Emanov, A.F., Emanov, A.A., Fateev, A.V., Leskova, E.V., Shevkunova, E.V., and Podkorytova, E.G., Mining-Induced Seismicity at Open Pit Mines in Kuzbass (Bachatsky Earthquake on June 18, 2013), J, Min. Sci., 2014, vol. 50, no. 2, pp. 224–228.CrossRefGoogle Scholar
  35. 35.
    Wei, S., Avouac, J.-P., Hudnut, K.W., Donnellan, A., Parker, J.W., Graves, R.W., Helmberger, D., Fielding, E., Liu, Z., Cappa, F., and Eneva, M., The 2012 Brawley Swarm Triggered by Injection-Induced Aseismic Slip, Earth and Planetary Science Letters, 2015, vol. 422, pp. 115–122.CrossRefGoogle Scholar
  36. 36.
    Nazarov, L.A., Nazarova, L.A., Yaroslavtsev, A.F., Miroshnichenko, N.A., and Vasil’eva, E.V., Evolution of Stress Fields and Induced Seismicity in Operating Mines, J. Min. Sci., 2011, vol. 47, no. 6, pp. 707–713.CrossRefGoogle Scholar
  37. 37.
    Nazarova, L.A. and Nazarov, L.A., Evolution of Stresses and Permeability of Fractured-and-Porous Rock Mass around a Production Well, J. Min. Sci., 2016, vol. 52, no. 3, pp. 424–431.CrossRefGoogle Scholar
  38. 38.
    Kocharyan, G.G., Effect of Scale in Seismotectonics, Geodinam. Tektonofiz., 2014, vol. 5, no. 2, pp. 353–385.CrossRefGoogle Scholar
  39. 39.
    Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Relation of Linear Block Dimensions of Rock to Crack Opening in the Structural Hierarchy of Masses, J. Min. Sci., 1993, vol. 29, no. 3, pp. 197–203.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Adushkin
    • 1
    • 2
  • S. B. Kishkina
    • 1
  • G. G. Kocharyan
    • 1
    • 2
  1. 1.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Physico-Technical InstituteDolgoprudnyRussia

Personalised recommendations