Skip to main content
Log in

Differentiation Potential of Mesenchymal Stem Cells and Stimulation of Nerve Regeneration

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are widely used in experimental research on cell therapy intended for the stimulation of repair processes in damaged tissues and organs. The present review summarizes the results of studies devoted to the possible directions of MSC differentiation after the transplantation of these cells into damaged nerves or special engineered structures of biological and artificial biodegradable materials that join the ends of a damaged nerve (nerve conduits). Data on exogenous MSC differentiation into Schwann cells, pericytes, smooth muscle cells, endotheliocytes, and other cell types are presented. Methods for preliminary MSC differentiation in vitro and examples of beneficial effects of these cells transplanted into damaged conductive nerves on nerve regeneration are given. The fate of exogenous MSCs placed into an unnatural biological niche remains poorly characterized and requires further studies, as emphasized in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, Y., Radtke, C., and Kocsis, J.D., Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells, J. Neurosci., 2002, vol. 22, no. 15, pp. 6623–6630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anzalone, R., Lo Iacono, M., Loria, T., et al., Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes, Stem Cell Rev., 2011, vol. 7, no. 2, pp. 342–363.

    Article  PubMed  Google Scholar 

  • Armati, P.J., The Biology of Schwann Cells, Cambridge: Cambridge Univ. Press, 2007.

    Book  Google Scholar 

  • Arutyunyan, I.V., Angiogenic properties of multipotent stromal cells of the umbilical cord:, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Nauch.-Issled. Inst. Morfologii Cheloveka, 2017.

    Google Scholar 

  • Arutyunyan, G.A. and Kostyaeva, M.G., Mobilization of pericytes in inflammation and regeneration of connective tissue, Morfologiya, 2016, no. 3, p. 20.

    Google Scholar 

  • Baal, N., Widmer-Teske, R., McKinnon, T., et al., In vitro spheroid model of placental vasculogenesis: does it work?, Lab. Invest., 2009, vol. 89, no. 2, pp. 152–163.

    Article  PubMed  CAS  Google Scholar 

  • Banin, V.V. and Kostyaeva, M.G., Angiogenesis as a mechanism for implementing the functions of mesenchymal stem cells, Zh. Anat. Gistopatol., 2015, vol. 4, no. 3, p. 25.

    Google Scholar 

  • Barry, F.P. and Murphy, J.M., Mesenchymal stem cells: clinical applications and biological characterization, Int. J. Biochem. Cell. Biol., 2004, vol. 4, pp. 568–584.

    Article  CAS  Google Scholar 

  • Braga-Silva, J., Gehlen, D., Padoin, A.V., et al., Can local supply of bone marrow mononuclear cells improve the outcome from late tubular repair of human median and ulnar nerves?, J. Hand Surg. Eur., 2008, vol. 33, no. 4, pp. 488–493.

    Article  CAS  Google Scholar 

  • Brohlin, M., Mahay, D., Novikov, L.N., et al., Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells, Neurosci. Res., 2009, vol. 64, pp. 41–49.

    Article  PubMed  Google Scholar 

  • Brück, W., The role of macrophages in wallerian degeneration, Brain Pathol., 1997, vol. 7, no. 2, pp. 741–752.

    Article  PubMed  Google Scholar 

  • Bunge, M.B., Wood, P.M., Tynan, L.B., et al., Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker, Science, 1989, vol. 243, no. 4888, pp. 229–231.

    Article  PubMed  CAS  Google Scholar 

  • Cao, S., Wei, X., Li, H., et al., Comparative study on the differentiation of mesenchymal stem cells between fetal and postnatal rat spinal cord niche, Cell Transplant., 2016, vol. 25, no. 6, pp. 1115–1130.

    Article  PubMed  Google Scholar 

  • Caplan, A.I., Mesenchymal stem cells, J. Orthop. Res., 1991, vol. 9, no. 5, pp. 641–650.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. and Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis, Nature, 2011, vol. 473, no. 7347, pp. 298–307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chelyshev, Yu.A., Regeneratsiya v nervnoi sisteme, Rukovodstvo po gistologii (Regeneration in the Nervous System: A Guide on Histology), Danilov, R.K., Ed., St. Petersburg: SpetsLit, 2011, vol. 1, pp. 656–665.

    Google Scholar 

  • Chen, X., Wang, X.D., Chen, G., et al., Study of in vivo differentiation of rat bone marrow stromal cells into Schwann cell-like cells, Microsurgery, 2006, vol. 26, no. 2, pp. 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.L., Yu, W.M., and Strickland, S., Peripheral regeneration, Annu. Rev. Neurosci., 2007, vol. 30, pp. 209–233.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M.Y., Lie, P.C., Li, Z.L., and Wei, X., Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells, Exp. Hematol., 2009, vol. 37, no. 5, pp. 629–640.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Hao, H., Tong, C., et al., Transdifferentiation of umbilical cord-derived mesenchymal stem cells into epidermal-like cells by the mimicking skin microenvironment, Int. J. Low. Extrem. Wounds, 2015, vol. 14, no. 2, pp. 136–145.

    Article  PubMed  CAS  Google Scholar 

  • Chertok, V.M., Chertok, A.G., and Zenkina, V.G., Endothelium-dependent regulation of angiogenesis, Tsitologiia, 2017, vol. 59, no. 4, pp. 243–258.

    CAS  PubMed  Google Scholar 

  • Chimutengwende-Gordon, M. and Khan, W., Recent advances and developments in neural repair and regeneration for hand surgery, Open Orthop. J., 2012, vol. 6, no. 1, pp. 103–107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, K.J., Trzaska, K.A., Greco, S.J., et al., Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance p by interleukin-1a, Stem Cells, 2005, vol. 23, no. 3, pp. 383–391.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y.K. and Kim, K.W., Blood-neural barrier: its diversity and coordinated cell-to-cell communication, BMB Rep., 2008, vol. 41, pp. 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Chong, J.J., Cell therapy for left ventricular dysfunction: an overview for cardiac clinicians, Heart Lung Circ., 2012, vol. 21, no. 9, pp. 532–542.

    Article  PubMed  Google Scholar 

  • Colazzo, F., Alrashed, F., Saratchandra, P., et al., Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells, Growth Factors, 2014, vol. 32, no. 5, pp. 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Cuevas, P., Carceller, F., Dujovny, M., et al., Peripheral nerve regeneration by bone marrow stromal cells, Neurol. Res., 2002, vol. 24, no. 7, pp. 634–638.

    Article  PubMed  Google Scholar 

  • Dan, P., Velot, É., Decot, V., and Menu, P., The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells, J. Cell Sci., 2015, vol. 128, no. 14, pp. 2415–2422.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P.F., Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology, Nat. Clin. Pract. Cardiovasc. Med., 2009, vol. 6, pp. 16–26.

    Article  PubMed  CAS  Google Scholar 

  • Deng, J., Petersen, B.E., Steindler, D.A., et al., Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation, Stem Cells, 2006, vol. 24, no. 4, pp. 1054–1064.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa, M., Takahashi, I., Esaki, M., et al., Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells, Eur. J. Neurosci., 2001, vol. 14, pp. 1771–1776.

    Article  PubMed  CAS  Google Scholar 

  • Dvoretskii, D.P., Sokolova, I.B., Sergeev, I.V., and Bilibina, A.A., The effect of intracerebral mesenchymal stem cells transplantation on the density of microvascular network of the pia matter of the rat brain cortex, Ross. Fiziol. Zh. im. I.M. Sechenova, 2012, vol. 98, issue 4, pp. 525–534.

    PubMed  CAS  Google Scholar 

  • Efimenko, A.Yu., Tkachuk, V.A., and Parfenova, E.V., Transplantation of cell layers from mesenchymal stromal cells of adipose tissue effectively induces angiogenesis in ischemic skeletal muscles, Geny Kletki, 2015, vol. 10, no. 3, pp. 68–77.

    Google Scholar 

  • Efimenko, A.Yu., Dzhoyashvili, N.A., Kalinina, N.I., et al., Changes in angiogenic properties of adipose tissue MMSCs with age in patients with coronary heart disease, Klet. Transplantol. Tkan. Inzh., 2012, vol. 7, no. 4, pp. 73–82.

    Google Scholar 

  • El’chaninov, A.V., Fatkhudinov, T.Kh., Arutyunyan, I.V., Makarov, A.V., Lokhonina, A.V., Eremina, I.Z., Bicherova, I.A., and Bol’shakova, G.B., Directions of differentiation of allogenic multipotent stromal cells in regenerating liver, Zh. Anat. Gistopatol., 2017, vol. 6, no. 4, pp. 15–20.

    Google Scholar 

  • Frattini, F., Lopes, F.R., Almeida, F.M., et al., Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury, Tissue Eng. A, 2012, vol. 18, nos. 19–20, pp. 2030–2039.

    Article  CAS  Google Scholar 

  • Friedenstein, A.J., Piatetzky-Shapiro, I.I., and Petrakova, K.V., Osteogenesis in transplants of bone marrow cells, J. Embryol. Exp. Morphol., 1966, vol. 16, pp. 381–390.

    PubMed  CAS  Google Scholar 

  • Fu, S.Y. and Gordon, T., The cellular and molecular basis of peripheral nerve regeneration, Mol. Neurobiol., 1997, vol. 14, pp. 67–116.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y.S., Cheng, Y.C., Lin, M.Y., et al., Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for parkinsonism, Stem Cells, 2006, vol. 24, no. 1, pp. 115–124.

    Article  PubMed  Google Scholar 

  • Gallyamov, A.R., Masgutov, R.F., Khannanova, I.G., et al., Surgical treatment of peripheral nerves of the upper limb using autologous cells from the stromal vascular fraction, Prakt. Med., 2015, no. 4–1, pp. 46–48.

    Google Scholar 

  • Gorkun, A.L., The study of the induced vasculogenesis in 3D culture of multipotent mesenchymal stromal cells of the umbilical cord, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Nauch.-Issled. Inst. Obshch. Patol. Patofiziol., 2012.

    Google Scholar 

  • Guo, S.L., Zhang, Z.Y., Xu, Y., et al., Bone marrowderived, neural-like cells have the characteristics of neurons to protect the peripheral nerve in microenvironment, Stem Cells Int., 2015, vol. 2015, p. 941625.

    PubMed  PubMed Central  Google Scholar 

  • Herberts, C.A., Kwa, M.S., and Hermsen, H.P., Risk factors in the development of stem cell therapy, J. Transl. Med., 2011, no. 9, p. 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermann, A., Liebau, S., Gastl, R., et al., Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols, J. Neurosci. Res., 2006, vol. 83, pp. 1502–1514.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, E.L., Chai, L., and Krause, D.S., Plasticity of marrow-derived stem cells, Blood, 2003, vol. 102, no. 1, pp. 3483–3493.

    Article  PubMed  CAS  Google Scholar 

  • Hood, B., Levene, H.B., and Levi, A.D., Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects, Neurosurg. Focus, 2009, vol. 26, pp. 1–5.

    Article  Google Scholar 

  • Ivanov, A.N., Puchin’yan, D.M., and Norkin, I.A., The role of endothelial cells in angiogenesis, Usp. Sovrem. Biol., 2016, vol. 136, no. 5, pp. 491–506.

    Google Scholar 

  • Jujo, K., Ii, M., and Losordo, D.W., Endothelial progenitor cells in neovascularization of infarcted myocardium, J. Mol. Cell. Cardiol., 2008, vol. 45, no. 4, pp. 530–544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung, N., Park, S., Choi, Y., et al., Tonsil-derived mesenchymal stem cells differentiate into a Schwann cell phenotype and promote peripheral nerve regeneration, Int J. Mol. Sci., 2016, vol. 17, no. 11, p. E1867.

    Article  PubMed  CAS  Google Scholar 

  • Kalinina, N.I., Sysoeva, V.Yu., Rubina, K.A., et al., Mesenchymal stem cells in the growth and tissue repair, Acta Naturae, 2011, vol. 3, no. 4, pp. 32–39.

    Google Scholar 

  • Karagyaur, M.N., Makarevich, P.I., Shevchenko, E.K., et al., Current approaches to regeneration of peripheral nerves: prospects of gene and cell therapy, Geny Kletki, 2017, vol. 12, no. 1, pp. 6–14.

    Google Scholar 

  • Kaucká, M. and Adameyko, I., Non-canonical functions of the peripheral nerve, Exp. Cell Res., 2014, vol. 321, pp. 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Keilhoff, G. and Fansa, H., Mesenchymal stem cells for peripheral nerve regeneration—a real hope or just an empty promise?, Exp. Neurol., 2011, vol. 232, pp. 110–113.

    Article  PubMed  Google Scholar 

  • Khavinson, V.Kh., Lin’kova, N.S., Elashkina, E.V., et al., Molecular aspects of antiatherosclerotic effect of short peptides, Klet. Tekhnol. Biol. Med., 2014, no. 3, pp. 185–189.

    Google Scholar 

  • Kim, H., Cho, H.J., Kim, S.W., et al., CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease, Circ. Res., 2010, vol. 107, no. 5, pp. 602–614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kingham, P.J., Kalbermatten, D.F., Mahay, D., et al., Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro, Exp. Neurol., 2007, vol. 207, no. 2, pp. 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Kolos, E.A., Grigor’ev, I.P., and Korzhevskii, D.E., Marker of synaptic contacts—synaptophysin, Morfologiya, 2015, vol. 147, no. 1, pp. 78–82.

    Google Scholar 

  • Koltsova, A.M., Krylova, T.A., Musorina, A.S., et al., The dynamics of cell properties during long-term cultivation of two lines of mesenchymal stem cells derived from Wharton’s jelly of human umbilical cord, Cell Tissue Biol., 2018, vol. 12, no. 1, pp. 7–19.

    Article  Google Scholar 

  • Kopen, G.C., Prockop, D.J., and Phinney, D.G., Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 10711–10716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuroda, Y. and Dezawa, M., Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine, Anat. Rec. (Hoboken), 2014, vol. 297, no. 1, pp. 98–110.

    Article  CAS  Google Scholar 

  • Ladak, A., Olson, J., Tredget, E.E., and Gordon, T., Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model, Exp. Neurol., 2011, vol. 228, pp. 242–252.

    Article  PubMed  CAS  Google Scholar 

  • Lasso, J.M., Pérez Cano, R., Castro, Y., et al., Xenotransplantation of human adipose-derived stem cells in the regeneration of a rabbit peripheral nerve, J. Plast. Reconstr. Aesthet. Surg 2015, vol. 68, no. 12. e189–97.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Qin, H., Feng, Z., et al., Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury, Neural. Regen. Res., 2013, vol. 8, no. 36, pp. 3441–3448.

    PubMed  PubMed Central  Google Scholar 

  • Li, P., Zhou, C., Yin, L., Meng, X., and Zhang, L., Role of hypoxia in viability and endothelial differentiation potential of UC-MSC and VEGF interference, Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2013, vol. 38, no. 4, pp. 329–340.

    PubMed  CAS  Google Scholar 

  • Liechty, K.W., Mackenzie, T.C., Shaaban, A.F., et al., Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep, Nat. Med., 2000, vol. 6, no. 11, pp. 1282–1286.

    Article  PubMed  CAS  Google Scholar 

  • Lou, G., Chen, Z., Zheng, M., and Liu, Y., Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases, Exp. Mol. Med., 2017, vol. 49, no. 6. e346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madduri, S. and Gander, B., Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration, J. Periph. Nerv. Syst., 2010, vol. 15, pp. 93–103.

    Article  CAS  Google Scholar 

  • Mahay, D., Terenghi, G., and Shawcross, S.G., Growth factors in mesenchymal stem cells following glial-cell differentiation, Biotechnol. Appl. Biochem., 2008, vol. 51, no. 4, pp. 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Makarevich, P.I., Boldyreva, M.A., Dergilev, K.V., et al., Transplantation of cell layers of mesenchymal stromal cells of adipose tissue efficiently induces angiogenesis in ischemic skeletal muscles, Geny Kletki, 2015, vol. 10, no. 3, pp. 68–77.

    Google Scholar 

  • Marconi, S., Castiglione, G., Turano, E., et al., Adiposederived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush, Tissue Eng., 2012, vol. 18, nos. 11–12, pp. 1264–1272.

    Article  CAS  Google Scholar 

  • Martinez, A.M., Goulart, C.O., Ramalho Bdos, S., et al., Neurotrauma and mesenchymal stem cells treatment: from experimental studies to clinical trials, World J. Stem. Cells, 2014, vol. 6, no. 2, pp. 179–194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuse, D., Kitada, M., Kohama, M., et al., Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration, J. Neuropathol. Exp. Neurol., 2010, vol. 69, no. 9, pp. 973–985.

    Article  PubMed  CAS  Google Scholar 

  • Mimura, T., Dezawa, M., Kanno, H., et al., Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats, J. Neurosurg., 2004, vol. 101, pp. 806–812.

    Article  PubMed  Google Scholar 

  • Mirsky, R. and Jessen, K.R., The neurobiology of Schwann cells, Brain Pathol., 1999, vol. 9, no. 2, pp. 293–311.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, K.E., Weiss, M.L., Mitchell, B.M., et al., Matrix cells from Wharton’s jelly form neurons and glia, Stem Cells, 2003, vol. 21, no. 1, pp. 50–60.

    Article  PubMed  CAS  Google Scholar 

  • Monk, K.R., Feltri, M.L., and Taveggia, C., New insights on Schwann cell development, Glia, 2015, vol. 63, pp. 1376–1393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montiel-Eulefi, E., Nery, A.A., Rodrigues, L.C., et al., Neural differentiation of rat aorta pericyte cells, Cytometry A, 2012, vol. 81, no. 1, pp. 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev, S.I., Gallyamov, A.R., and Chelyshev, Yu.A., Local delivery of VEGF and FGF2 genes stimulating nerve regeneration, Astrakhan. Med. Zh., 2013, vol. 8, no. 1, pp. 170–174.

    Google Scholar 

  • Nozdrachev, A.D. and Chumasov, E.I., Perifericheskaya nervnaya sistema (The Peripheral Nervous System), St. Petersburg: Nauka, 1990.

    Google Scholar 

  • Orbay, H., Uysal, A.C., Hyakusoku, H., and Mizuno, H., Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps, J. Plast. Reconstr. Aesthet. Surg., 2012, vol. 65, no. 5, pp. 657–664.

    Article  PubMed  Google Scholar 

  • Oswald, J., Boxberger, S., Jørgensen, B., et al., Mesenchymal stem cells can be differentiated into endothelial cells in vitro, Stem Cells, 2004, vol. 22, no. 3, pp. 377–384.

    Article  PubMed  Google Scholar 

  • Pan, M., Wang, X., Chen, Y., et al., Tissue engineering with peripheral blood-derived mesenchymal stem cells promotes the regeneration of injured peripheral nerves, Exp. Neurol., 2017, vol. 292, pp. 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Paul, G., Özen, I., Christophersen, N.S., et al., The adult human brain harbors multipotent perivascular mesenchymal stem cells, PLoS One, 2012, vol. 7, no. 4. e35577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Payushina, O.V., The localization and function of mesenchymal stromal cells in vivo, Zh. Obshch. Biol., 2015, no. 2, pp. 161–172.

    Google Scholar 

  • Payushina, O.V. and Domaratskaya, E.I., Heterogeneity and possible structure of a population of mesenchymal stromal cells, Tsitologiia, 2015, vol. 57, no. 1, pp. 31–38.

    Google Scholar 

  • Petrova, E.S., The use of stem cells to stimulate regeneration of damaged nerve, Tsitologiia, 2012, vol. 54, no. 7, pp. 525–540.

    PubMed  CAS  Google Scholar 

  • Petrova, E.S., Isaeva, E.N., and Korzhevskii, D.E., Transplantation of multipotent bone marrow stromal cells into an injured rat sciatic nerve, in Aktual’nye problemy morfologii: embrional’nyi i reparativnyi gistogenez, filogistogenez (Actual Problems of Morphology: Embryonic and Reparative Histogenesis and Filogistogenez), Val’kovich, E.I, and Droblenkov, A.V., Eds., St. Petersburg: S.-Peterb. Med. Univ., 2014, pp. 110–113.

    Google Scholar 

  • Petrova, D.Yu., Podgaiskii, V.N., Cherevko, T.V., et al., Method of surgical treatment of patients with peripheral nerve injury based on a combined graft with the installation of autologous mesenchymal stem cells of adipose tissue: a pilot experiment, Khirurg. Vost. Evropa, 2015, vol. 4, no. 16, pp. 39–51.

    Google Scholar 

  • Petrova, E.S., Isaeva, E.N., and Kolos, E.A Exogenous MSCs in the recipient nerve perineurium (experimental study), in Materialy XXIII s”ezda Fiziologicheskogo obshchestva imeni I.P. Pavlova (Proceedings of the XXIII Congress of Pavlov Physiological Society), Voronezh: Izd. Istoki, 2017a, pp. 2375–2377.

    Google Scholar 

  • Petrova, E.S., Isaeva, E.N., and Korzhevskii, D.E., Possible pathways of differentiation of mesenchymal stem cells of rat bone marrow after their transplantation in a regenerating nerve, in Aktual’nye voprosy tkanevoi i kletochnoi transplantologii: sbornik tezisov (Relevant Problems of Tissue and Cell Transplantation: Abstracts of VII All-Russian Symposium with International Participation), Astrakhan: Astrakhan Gos, Med. Univ., 2017b, pp. 97–99.

    Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., et al., Multilineage potential of adult human mesenchymal stem cells, Science, 1999, vol. 284, no. 5411, pp. 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Poveshchenko, O.V., Poveshchenko, A.F., and Konenkov, V.I., Physiological and cytological bases of cellular regulation of angiogenesis, Usp. Fiziol. Nauk, 2012, vol. 43, no. 3, pp. 8–61.

    Google Scholar 

  • Prockop, D.J., Marrow stromal cells as stem cells for nonhematopoietic tissues, Science, 1997, vol. 276, pp. 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Quintiliano, K., Crestani, T., Silveira, D., et al., Neural differentiation of mesenchymal stem cells on scaffolds for nerve tissue engineering applications, Cell Reprogram., 2016, vol. 18, no. 6, pp. 369–381.

    Article  PubMed  CAS  Google Scholar 

  • Radtke, C., Akiyama, Y., Lankford, K.L., et al., Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons, Neurosci. Lett., 2005, vol. 387, pp. 85–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravasi, M., Scuteri, A., Pasini, S., et al., Undifferentiated MSC are able to myelinate DRG neuron processes throughp75, Exp. Cell Res., 2013, vol. 319, no. 19, pp. 2989–2999.

    Article  PubMed  CAS  Google Scholar 

  • Rechthand, E. and Rapoport, S.I., Regulation of the microenvironment of peripheral nerve: role of the blood–nerve barrier, Prog. Neurobiol., 1987, vol. 28, no. 4, pp. 303–343.

    Article  PubMed  CAS  Google Scholar 

  • Ribatti, D., Nico, B., and Crivellato, E., The role of pericytes in angiogenesis, Int. J. Dev. Biol., 2011, vol. 55, pp. 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Ribatti, D., Nico, B., and Crivellato, E., The development of the vascular system: a historical overview, Methods Mol. Biol., 2015, vol. 1214, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, H.H., Kang, B.J., Park, S.S., et al., Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs, J. Vet. Med. Sci., 2012, vol. 74, no. 12, pp. 1617–1630.

    Article  PubMed  CAS  Google Scholar 

  • Saburina, I.N., Gorkun, A.A., Zurina, I.M, et al., Studying the angiogenic potential of human multipotent mesenchymal stromal cells, Patogenez, 2013, vol. 11, no. 1, pp. 59–62.

    Google Scholar 

  • Sagaradze, G.D., Grigor’eva, O.A., Efimenko, A.Yu., et al., The therapeutic potential of secretory components of human mesenchymal stromal cells: the problem of standardization, Biomed. Khim., 2015, vol. 61, no. 6, pp. 750–759.

    Article  PubMed  CAS  Google Scholar 

  • Salafutdinov, I.I., Masgutov, R.F., Bogov, A.A., et al., The therapeutic potential of cells of the stromal vascular fraction of adipose tissue in the regeneration of peripheral nerve defects, in Stvolovye kletki i regenerativnaya meditsina (Stem Cells and Regenerative Medicine), Tkachuk, V.A., Ed., Moscow: MAKS-Press, 2012, pp. 70–71.

    Google Scholar 

  • Sasaki, M., Abe, R., Fujita, Y., et al., Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type, J. Immunol., 2008, vol. 180, no. 4, pp. 2581–2587.

    Article  PubMed  CAS  Google Scholar 

  • Schendzielorz, P., Froelich, K., Rak, K., et al., Labeling adipose-derived stem cells with Hoechst 33342: usability and effects on differentiation potential and DNA damage, Stem Cells Int., 2016, vol. 2016, no. 6549347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shalaby, S.M., El-Shal, A.S., Ahmed, F.E., et al., Combined Wharton’s jelly derived mesenchymal stem cells and nerve guidance conduit: a potential promising therapy for peripheral nerve injuries, Int. J. Biochem. Cell Biol., 2017, vol. 86, pp. 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Shchanitsyn, I.N., Ivanov, A.N., Bazhanov, S.P., et al., Stimulating the peripheral nerve regeneration: current state, problems, and prospects, Usp. Fiziol. Nauk, 2017, vol. 48, no. 3, pp. 92–112.

    Google Scholar 

  • Simon-Assmann, P., Orend, G., Mammadova-Bach, E., et al., Role of laminins in physiological and pathological angiogenesis, Int. J. Dev. Biol., 2011, vol. 55, nos. 4–5, pp. 455–465.

    Article  PubMed  CAS  Google Scholar 

  • Sokolova, I.B., Sergeev, I.V., Anisimov, S.V., et al., Effect of transplantation of mesenchymal stem cells on the density of microvascular network of pial membrane of the brain cortex of rats of different age, Klet. Tekhnol. Biol. Med., 2012, no. 4, pp. 205–209.

    Google Scholar 

  • Sokolova, I.B., Anisimov, S.V., Puzanov, M.V., et al., The effect of mesenchymal stem cell donor age on the density of the pia microvascular network in the cerebral cortex of old recipient rats, Adv. Gerontol., 2015, vol. 5, no. 2, pp. 94–98.

    Article  Google Scholar 

  • Sokolova, I.B. and Polyntsev, D.G., The efficacy of mesenchymal stem cells for the improvement of cerebral microcirculation in spontaneously hypertensive rats, Cell Tissue Biol., 2017, vol. 11, no. 5, pp. 343–348.

    Article  Google Scholar 

  • Stagg, J. and Galipeau, J., Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation, Curr. Mol. Med., 2013, vol. 13, no. 5, pp. 856–867.

    Article  PubMed  CAS  Google Scholar 

  • Stoll, G., Jander, S., and Myers, R.R., Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation, J. Peripher Nerv. Syst., 2002, vol. 7, pp. 13–27.

    Article  PubMed  Google Scholar 

  • Szynkaruk, M., Kemp, S.W.P., Wood, M.D., et al., Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction, Tissue Eng. Part B. Rev., 2013, vol. 19, no. 1, pp. 83–96.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, E., Kin, M., Torimura, T., et al., Endothelial progenitor cell transplantation improves the survival following liver injury in mice, Gastroenterology, 2006, vol. 130, no. 2, pp. 521–531.

    Article  PubMed  CAS  Google Scholar 

  • Vasil’ev, I.S., Vasil’ev, S.A., Abushkin, I.A., et al., Angiogenesis (literature review), Chelovek. Sport. Meditsina, 2017, vol. 17, no. 1, pp. 36–45.

    Google Scholar 

  • Wakao, S., Matsuse, D., and Dezawa, M., Mesenchymal stem cells as a source of Schwann cells: their anticipated use in peripheral nerve regeneration, Cells Tissues Organs, 2014, vol. 200, no. 1, pp. 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Wakitani, S., Saito, T., and Caplan, A.I., Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine, Muscle Nerve, 1995, vol. 18, no. 12, pp. 1417–1426.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, S. and Midha, R., Use of stem cells to augment nerve injury repair, Neurosurgery, 2009, vol. 65, no. 4, pp. 80–86.

    Article  Google Scholar 

  • Wehner, T., Bontert, M., Eyupoglu, I., et al., Bone marrow- derived cells expressing green fluorescent protein under the control of the glial fibrillary acidic protein promoter do not differentiate into astrocytes in vitro and in vivo, J. Neurosci., 2003, vol. 23, pp. 5004–5011.

    Article  PubMed  CAS  Google Scholar 

  • Widgerow, A.D., Salibian, A.A., Kohan, E., et al., “Strategic sequences” in adipose-derived stem cell nerve regeneration, Microsurgery, 2014, vol. 34, no. 4, pp. 324–330.

    Article  PubMed  Google Scholar 

  • Wislet-Gendebien, S., Hans, G., Leprince, P., et al., Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype, Stem Cells, 2005a, vol. 23, no. 3, pp. 392–402.

    Article  PubMed  CAS  Google Scholar 

  • Wislet-Gendebien, S., Wautier, F., Leprince, P., and Rogister, B., Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin, Brain Res. Bull., 2005b, vol. 68, nos. 1–2, pp. 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, D., Schwarz, E.J., Prockop, D.J., and Black, I.B., Adult rat and human bone marrow stromal cells differentiate into neurons, J. Neurosci. Res., 2000, vol. 61, pp. 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Lou, Q., Huang, R., et al., Dorsal root ganglion neurons induce transdifferentiation of mesenchymal stem cells along a Schwann cell lineage, Neurosci. Lett., 2008, vol. 445, pp. 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Yuan, X., Ding, F., et al., Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells, Tissue Eng., 2011, vol. 17, nos. 17–18, pp. 2231–2244.

    Article  CAS  Google Scholar 

  • Yoon, Y.S., Wecker, A., Heyd, L., et al., Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction, J. Clin. Invest., 2005, vol. 115, no. 2, pp. 326–338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zack-Williams, S.D., Butler, P.E., and Kalaskar D.M., Current progress in use of adipose derived stem cells in peripheral nerve regeneration, World J. Stem Cells, 2015, vol. 7, no. 1, pp. 51–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemelko, V.I., Grinchuk, T.M., Domnina, A.P., et al., Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells, Cell Tissue Biol., 2012, vol. 6, no. 1, pp. 1–11.

    Article  Google Scholar 

  • Zemelko, V.I., Kozhukharova, I.V., Kovaleva, Z.V., et al., Brain-derived neurotrofic factor (BDNF) secretion of human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue, Cell Tissue Biol., 2014, vol. 8, no. 4, pp. 283–291.

    Article  Google Scholar 

  • Zhang, P., He, X., Liu, K., et al., Bone marrow stromal cells differentiated into functional Schwann cells in injured rats sciatic nerve, Artif. Cells Blood Substit. Immobil. Biotechnol., 2004, vol. 32, no. 4, pp. 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.T., Liu, Z.L., Yao, X.Q., et al., Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study, Cytotherapy, 2012, vol. 14, no. 10, pp. 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Liu, X.C., Yang, L., et al., Wharton’s jellyderived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction, Coron. Artery Dis., 2013, vol. 24, no. 7, pp. 549–558.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Zhang, S., Zhou, J., et al., The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells, Biomaterials, 2010, vol. 31, no. 2, pp. 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Zochodne, D.W., Neurobiology of Peripheral Nerve Regeneration, Cambridge: Cambridge Univ. Press, 2008.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Petrova.

Additional information

Original Russian Text © E.S. Petrova, 2018, published in Ontogenez, 2018, Vol. 49, No. 4, pp. 219–232.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.S. Differentiation Potential of Mesenchymal Stem Cells and Stimulation of Nerve Regeneration. Russ J Dev Biol 49, 193–205 (2018). https://doi.org/10.1134/S1062360418040033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360418040033

Keywords

Navigation