Russian Journal of Developmental Biology

, Volume 49, Issue 2, pp 87–100 | Cite as

The Theory of Tensegrity and Spatial Organization of Living Matter

  • A. S. Ermakov


There is still no consensus on the mechanisms regulating the formation and maintenance of morphological structures in the individual development of living organisms. The hypothesis that the mechanical forces are important for biological morphogenesis was put forward more than 100 years ago. In recent decades, studies indicating the regulatory role of mechanical stresses at different levels of organization of life have appeared. The signaling mechanisms that are responsible for the reception of mechanical influences and reprogramming of the properties of cells and tissues are studied. Since the mid-1970s, the principles of selfstressed structures or the tensegrity (tensional integrity) theory have been applied to understand the structure and functions of living structures in statics and dynamics. According to this standpoint, the cell can be represented as a self-stressed structure in which microtubules function as rigid rods and microfilaments serve as elastic threads. Such a system is anchored to extracellular matrix through cellular contacts, since it is adjusted to the external patterns of mechanical stresses. The notion of living systems as self-stressed structures provides a fresh look at the mechanotransduction, developing organism integrity, and biological morphogenesis. Although the application of the ideas of tensegrity to biological systems has not yet received broad support among biologists, the influence of these ideas on the formation of modern mechanobiology and understanding the crucial role of cytoskeletal structures in cellular processes should be mentioned.


developmental biology cell biology morphogenesis cytoskeleton theoretical biology extracellular matrix mechanotransduction mechanobiology self-stressed structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achyuta, A.K., Conway, A.J., Crouse, R.B., et al., A modular approach to create a neurovascular unit-on-a-chip, Lab Chip, 2013, vol. 13, pp. 542–553.PubMedCrossRefGoogle Scholar
  2. Ainsworth, C., Stretching the imagination, Nature, 2008, vol. 456, no. 11, pp. 696–699.PubMedCrossRefGoogle Scholar
  3. Alberts, B., Johnson, A., Lewis, J., et al., Molecular Biology of the Cell, 6th ed., Abingdon, UK: Garland Science, 2015.Google Scholar
  4. Aragona, M., Panciera, T., Manfrin, A., et al., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors, Cell, 2013, vol. 154, no. 5, pp. 1047–1059.PubMedCrossRefGoogle Scholar
  5. Ausprunk, D.H. and Folkman, J., Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res., 1977, vol. 14, no. 1, pp. 53–65.PubMedCrossRefGoogle Scholar
  6. Balaban, N.Q., Schwarz, U.S., Riveline, D., et al., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nat. Cell Biol., 2001, vol. 3, no. 5, pp. 466–472.PubMedCrossRefGoogle Scholar
  7. Basu, S., Totty, N.F., Irwin, M.S., Downward, J., et al., Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14–3–3 and attenuation of p73-mediated apoptosis, Mol. Cell, 2003, vol. 11, no. 1, pp. 11–23.Google Scholar
  8. Beloussov, L.V., Osnovy obshchei embriologii (Fundamentals of General Embryology), Moscow: Izd. Mosk. Univ., 2005.Google Scholar
  9. Beloussov, L.V., Mechanically based generative laws of morphogenesis, Phys. Biol., 2008, vol. 5, no. 1, p. 015009.PubMedCrossRefGoogle Scholar
  10. Beloussov, L.V., Morphogenesis, morphomechanics, and genome, Vestnik VOGiS, 2009, vol. 13, no. 1, pp. 29–36.Google Scholar
  11. Beloussov, L.V., Self-organization, symmetry and morphomechanics, in Development of Organisms, Embryology— Updates and Highlights on Classic Topics, Pereira, L.V., Ed., In Tech., 2012, pp. 189–210.Google Scholar
  12. Beloussov, L.V. and Ermakov, A.S., Artificially applied tensions normalize development of relaxed Xenopus laevis embryos, Russ. J. Dev. Biol., 2001, vol. 32, no. 4, pp. 236–241.CrossRefGoogle Scholar
  13. Beloussov, L.V. and Mittenthal, J., Hyperrestoration of mechanical tensions as a possible driving mechanism of morphogenesis, Zh. Obshch. Biol., 1992, vol. 53, no. 6, pp. 797–807.Google Scholar
  14. Beloussov, L.V., Dorfman, J.G., and Cherdantzev, V.G., Mechanical stresses and morphological patterns in amphibian embryos, J. Embryol. Exp. Morphol., 1975, vol. 34, no. 3, pp. 559–574.PubMedGoogle Scholar
  15. Beloussov, L.V., Labas, J.A., and Kazakova, N.I., Growth pulsations in hydroid polyps: kinematics, biological role and cytophysiology, in Oscillations and Morphogenesis, Rensing, L., Ed., Basel: Marcel Dekker, 1993, pp. 183–193.Google Scholar
  16. Beloussov, L.V., Saveliev, S.V., Naumidi, I.I., et al., Mechanical stresses in embryonic tissues: patterns, morphogenetic role and involvement in regulatory feedback, Int. Rev. Cytol., 1994, vol. 150, pp. 1–34.PubMedGoogle Scholar
  17. Beloussov, L.V. and Grabovsky, V.I., Morphomechanics: goals, basic experiments and models, Int. J. Dev. Biol., 2006, vol. 50, nos. 2–3, pp. 81–92.CrossRefGoogle Scholar
  18. Bernfield, M.R. and Banerjee, S.D., The basal lamina in epithelial–mesenchymal interactions, in Biology and Chemistry of Basement Membranes, Kefalides, N., Ed., New York: Academic Press, 1978, pp. 137–148.Google Scholar
  19. Blechschmidt, E. and Gasser, R.F., Biokinetics and Biodynamics of Human Differentiation, Springfield, Illinois: Ch.C. Thomas Publ., 1978; North Atlantic Books, Reprint Ed., 2012.Google Scholar
  20. Butler, J.P., Tolic-Nørrelykke, I.M., Fabry, B., et al., Traction fields, moments, and strain energy that cells exert on their surroundings, Am. J. Physiol. Cell Physiol., 2002, vol. 282, no. 3, pp. 595–605.Google Scholar
  21. Cai, S., Pestic-Dragovich, L., O’Donnell, et al., Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation, Am. J. Physiol., 1998, vol. 275, no. 5, pt. 1, pp. 1349–1356.CrossRefGoogle Scholar
  22. Chen, C.S. and Ingber, D.E., Tensegrity and mechanoregulation: from skeleton to cytoskeleton, Osteoarthritis Cartilage, 1999, vol. 7, no. 1, pp. 81–94.PubMedCrossRefGoogle Scholar
  23. Chen, K.D., Li, Y.S., Kim, M., et al., Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc, J. Biol. Chem., 1999, vol. 274, no. 26, pp. 18393–18400.PubMedCrossRefGoogle Scholar
  24. Chicurel, M.E., Singer, R.H., Meyer, C., et al., Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions, Nature, 1998, vol. 392, no. 6677, pp. 730–733.PubMedCrossRefGoogle Scholar
  25. Dalby, M.J., Gadegaard, N., Herzyk, P., et al., Nanomechanotransduction and interphase nuclear organization influence on genomic control, J. Cell. Biochem., 2007, no. 102, pp. 1234–1244.PubMedCrossRefGoogle Scholar
  26. Danowski, B.A., Fibroblast contractility and actin organization are stimulated by microtubule inhibitors, J. Cell Sci., 1989, vol. 93, no. 2, pp. 255–266.PubMedGoogle Scholar
  27. Davidson, L., von Dassow, M., and Zhou, J., Multi-scale mechanics from molecules to morphogenesis, Int. J. Bioch. Cell Biol., 2009, vol. 41, no. 11, pp. 2147–2162.CrossRefGoogle Scholar
  28. Desprat, N., Supatto, W., Pouille, P.A., et al., Tissue deformation modulates twist expression to determine anterior midgut differentiation in drosophila embryos, Dev. Cell, 2008, vol. 15, no. 3, pp. 470–477.PubMedCrossRefGoogle Scholar
  29. Discher, D.E., Janmey, P., and Wang, Y.L., Tissue cells feel and respond to the stiffness of their substrate, Science, 2005, no. 310, pp. 1139–1143.PubMedCrossRefGoogle Scholar
  30. Dong, J., Feldmann, G., Huang, J., Wu, S., et al., Elucidation of a universal size-control mechanism in Drosophila and mammals, Cell, 2007, no. 130, pp. 1120–1133.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dupont, S., Role of YAP/TAZ in cell–matrix adhesion–mediated signalling and mechanotransduction, Exp. Cell Res., 2016, vol. 343, no. 1, pp. 42–53.PubMedCrossRefGoogle Scholar
  32. Dupont, S., Morsut, L., Aragona, M., et al., Role of YAP/TAZ in mechanotransduction, Nature, 2001, no. 474, pp. 179–183.CrossRefGoogle Scholar
  33. Eckes, B., Dogic, D., Colucci-Guyon, E., et al., Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts, J. Cell Sci., 1998, vol. 111, no. 13, pp. 1897–1907.Google Scholar
  34. Emmerich, D.G., Construction de réseaux autotendants, French Patent no. 1377290, September 28, 1964.Google Scholar
  35. Ermakov, A.S. and Beloussov, L.V., Variability and asymmetry of axial rudiments in Xenopus laevis embryos upon disturbance of cell movements and tension fields in the early gastrula marginal zone, Russ. J. Dev. Biol., 1998a, vol. 29, no. 1, pp. 38–46.Google Scholar
  36. Ermakov, A.S. and Beloussov, L.V., Morphogenetic and differentiation consequences of relaxation of mechanical tensions in the Xenopus laevis blastula, Russ. J. Dev. Biol., 1998b, vol. 29, no. 6, pp. 450–458.Google Scholar
  37. Farge, E., Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium, Curr. Biol., 2003, vol. 13, no. 16, pp. 1365–1377.PubMedCrossRefGoogle Scholar
  38. Fey, E.G., Wan, K.M., and Penman, S., Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three dimensional organization and protein composition, J. Cell Biol., 1984, vol. 98, no. 6, pp. 1973–1984.PubMedCrossRefGoogle Scholar
  39. Fuller, R.B., Tensegrity, Portfolio Art News Ann., 1961, no. 4, pp. 112–127.Google Scholar
  40. Fuller, R.B., Tensile-integrity structures, U.S. Patent no. 3063521, November 13, 1962.Google Scholar
  41. Galbraith, C.G., Yamada, K.M., and Sheetz, M.P., The relationship between force and focal complex development, J. Cell Biol., 2002, vol. 159, no. 4, pp. 695–705.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ghosh, K. and Ingber, D.E., Micromechanical control of cell and tissue development: implications for tissue engineering, Adv. Drug Deliv. Rev., 2007, vol. 59, no. 13, pp. 1306–1318.PubMedCrossRefGoogle Scholar
  43. Glogauer, M., Arora, P., Yao, G., et al., Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching, J. Cell Sci., 1997, vol. 110, no. 1, pp. 11–21.PubMedGoogle Scholar
  44. Gordon, R., Mechanics in embryogenesis and embryonics: prime mover or epiphenomenon, Int. J. Dev. Biol., 2006, vol. 50, nos. 2–3, pp. 245–253.PubMedCrossRefGoogle Scholar
  45. Hagert, E. and Hagert, C.G., Understanding stability of the distal radioulnar joint through an understanding of its anatomy, Hand Clin., 2010, vol. 26, no. 4, pp. 459–466.PubMedCrossRefGoogle Scholar
  46. Halder, G. and Johnson, R.L., Hippo signaling: growth control and beyond, Development, 2011, vol. 138, no. 1, pp. 9–22.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Harris, A.K., Stopak, D., and Warner, P., Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the turing model, Development, vol. 80, no. 1, pp. 1–20.Google Scholar
  48. Heuser, J.E. and Kirschner, M.W., Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol., 1980, vol. 86, no. 1, pp. 212–234.PubMedCrossRefGoogle Scholar
  49. His, W., On the principles of animal morphology, Proc. Roy. Soc. Edinburgh, 1888, no. 15, pp. 287–298.Google Scholar
  50. Hoffman, B.D., Grashoff, C., and Schwartz, M.A., Dynamic molecular processes mediate cellular mechanotransduction, Nature, 2011, vol. 475, no. 7356, pp. 316–323.PubMedCrossRefGoogle Scholar
  51. Huang, C. and Ogawa, R., Mechanotransduction in bone repair and regeneration, FASEB J., 2010, vol. 24, no. 10, pp. 3625–3632.PubMedCrossRefGoogle Scholar
  52. Huh, D., Matthews, B.D., Mammoto, A, et al., Reconstituting organ-level lung functions on a chip, Science, 2010, vol. 328, no. 5986, pp. 1662–1668.PubMedCrossRefGoogle Scholar
  53. Ingber, D.E., Fibronectin controls capillary endothelial cell growth by modulating cell shape, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, no. 9, pp. 3579–3583.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ingber, D.E., Integrins as mechanochemical transducers, Curr. Opin. Cell Biol., 1991, vol. 3, no. 5, pp. 841–848.PubMedCrossRefGoogle Scholar
  55. Ingber, D.E., Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton, J. Cell Sci., 1993, vol. 104, no. 3, pp. 613–627.PubMedGoogle Scholar
  56. Ingber, D.E., Tensegrity: the architectural basis of cellular mechanotransduction, Annu. Rev. Physiol., 1997, vol. 59, pp. 575–599.PubMedCrossRefGoogle Scholar
  57. Ingber, D.E., Tensegrity. I. Cell structure and hierarchical systems biology, J. Cell Sci., 2003, vol. 116, no. 7, pp. 1157–1173.PubMedCrossRefGoogle Scholar
  58. Ingber, D.E., Mechanical control of tissue morphogenesis during embryological development, Int. J. Dev. Biol., 2006, vol. 50, nos. 2–3, pp. 255–266.PubMedCrossRefGoogle Scholar
  59. Ingber, D.E., Tensegrity-based mechanosensing from macro to micro, Prog. Biophys. Mol. Biol., 2008, vol. 97, nos. 2–3, pp. 163–179.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ingber, D.E., From cellular mechanotransduction to biologically inspired engineering, Ann. Biomed. Eng., 2010, vol. 38, no. 3, pp. 1148–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ingber, D.E., Reverse engineering human pathophysiology with organs-on-chips, Cell, 2016, vol. 164, no. 6, pp. 1105–1109.PubMedCrossRefGoogle Scholar
  62. Ingber, D.E. and Jamieson, J.D., Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces tranduced over basement membrane, in Gene Expression During Normal and Malignant Differentiation, Andersson, L.C., Gahmberg, C.G., and Ekblom, P., Ed., Orlando: Academic Press, 1985, pp. 13–32.Google Scholar
  63. Ingber, D.E., Wang, N., and Stamenovic, D., Tensegrity, cellular biophysics, and the mechanics of living systems, Rep. Prog. Phys., 2014, vol. 77, no. 4, p. 046603.PubMedGoogle Scholar
  64. Jacobs, C.R., Huang, H., and Kwon, R.Y., Introduction to Cell Mechanics and Mechanobiology, Garland Science, 2012.Google Scholar
  65. Jang, K.J., Mehr, A.P., Hamilton, G.A., et al., Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment, Integr. Biol., 2013, vol. 5, no. 9, pp. 1089–1198.CrossRefGoogle Scholar
  66. Jauregui, V.G., Controversial origins of tensegrity, in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009: Volution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Valencia, September 28–October 2, 2009, Domingo, A. and Lazaro, C., Eds., Spain: Universidad Politecnica de Valencia, 2009, pp. 1642–1652.Google Scholar
  67. Juan, W.C. and Hong, W., Targeting the Hippo signaling pathway for tissue regeneration and cancer therapy, Genes, 2016, vol. 7, p. 55. genes7090055.PubMedCentralCrossRefGoogle Scholar
  68. Kaech, S., Ludin, B., and Matus, A., Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins, Neuron, 1996, vol. 17, no. 6, pp. 1189–1199.PubMedCrossRefGoogle Scholar
  69. Kassolik, K., Jaskólska, A., Kisiel-Sajewicz, K., et al., Tensegrity principle in massage demonstrated by electro- and mechanomyography, J. Body Mov. Ther., 2009, vol. 13, no. 2, pp. 164–170.CrossRefGoogle Scholar
  70. Keller, R., Davidson, L., Edlund, A., et al., Mechanisms of convergence and extension by cell intercalation, Phil. Trans. R. Soc. Lond., 2000, vol. 355, no. 1399, pp. 897–922.CrossRefGoogle Scholar
  71. Keller, R., The origin and morphogenesis of amphibian somites, Curr. Top Dev. Biol., 2000, vol. 47, pp. 183–246.PubMedCrossRefGoogle Scholar
  72. Kim, N.G., Koh, E., Chen, X., et al., E-cadherin mediates contact inhibition of proliferation through hippo signaling- pathway components, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 29, pp. 11930–11935.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kim, H.J., Huh, D., Hamilton, G., et al., Human gut-ona chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow, Lab Chip, 2012, vol. 12, no. 12, pp. 2165–2174.PubMedCrossRefGoogle Scholar
  74. Kim, H.J., Li, H., Collins, J.J., et al., Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human guton- a-chip, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 1, pp. 7–15.CrossRefGoogle Scholar
  75. Kolodney, M.S. and Elson, E.L., Contraction due to microtubule disruption is associated with increasing phosphorylation of myosin regulatory light chain, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, no. 22, pp. 10252–10256.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kolodney, M.S. and Wysolmerski, R.B., Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study, J. Cell Biol., 1992, vol. 11, no. 1, pp. 73–82.CrossRefGoogle Scholar
  77. Langevin, H.M., Bouffard, N.A., Badger, G.J., et al., Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo, Am. J. Physiol. Cell Physiol., 2005, vol. 288, no. 3, pp. 747–756.CrossRefGoogle Scholar
  78. Langevin, H.M., Storch, K.N., Snapp, R.R., et al., Tissue stretch induces nuclear remodeling in connective tissue fibroblasts, Histochem. Cell Biol., 2010, vol. 133, no. 4, pp. 405–415.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liedl, T., Högberg, B., Tytell, J., et al., Self-assembly of three-dimensional prestressed tensegrity structures from DNA, Nat. Nanotechnol., 2010, vol. 5, no. 7, pp. 520–524.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Maina, J.N., Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung, Respir. Physiol. Neurobiol., 2007, vol. 155, no. 1, pp. 1–10.PubMedCrossRefGoogle Scholar
  81. Mammoto, T. and Ingber, D.E., Mechanical control of tissue and organ development, Development, 2010, vol. 137, no. 9, pp. 1407–1420.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mammoto, T., Mammoto, A., and Ingber, D.E., Mechanobiology and developmental control, Ann. Rev. Cell Dev. Biol., 2013, vol. 29, pp. 27–61.CrossRefGoogle Scholar
  83. Maniotis, A., Bojanowski, K., and Ingber, D.E., Mechanical continuity and reversible chromosome disassembly within intact genomes microsurgically removed from living cells, J. Cell Biochem., 1997, vol. 65, no. 1, pp. 114–130.PubMedCrossRefGoogle Scholar
  84. Meyer, C.J., Alenghat, F.J., Rim, P., et al., Mechanical control of cyclic amp signaling and gene transcription through activated integrins, Nat. Cell Biol., 2000, vol. 2, no. 9, pp. 666–668.PubMedCrossRefGoogle Scholar
  85. Miyamoto, S., Teramoto, H., Coso, O.A., et al., Integrin function: molecular hierarchies of cytoskeletal and signaling molecules, J. Cell Biol., 1995, vol. 131, no. 3, pp. 791–805.PubMedCrossRefGoogle Scholar
  86. Moore, K.A., Polte, T., Huang, S., et al., Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by rho and cytoskeletal tension, Dev. Dyn., 2005, vol. 232, no. 2, pp. 268–281.PubMedCrossRefGoogle Scholar
  87. Parker, K.K. and Ingber, D.E., Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2007, vol. 362, no. 1484, pp. 1267–1279.PubMedCrossRefGoogle Scholar
  88. Pelham, R.J. and Wang, Y., Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, no. 25, pp. 13661–13665.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Piccolo, S., Dupont, S., and Cordenonsi, M., The biology of YAP/TAZ: HIPPO signaling and beyond, Physiol. Rev., 2014, vol. 94, no. 4, pp. 1287–1312.PubMedCrossRefGoogle Scholar
  90. Plopper, G. and Ingber, D.E., Rapid induction and isolation of focal adhesion complexes, Biochem. Biophys. Res. Commun., 1993, vol. 193, no. 2, pp. 571–578.PubMedCrossRefGoogle Scholar
  91. Plopper, G., McNamee, H., Dike, L., et al., Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex, Mol. Biol. Cell, 1995, vol. 6, no. 10, pp. 1349–1365.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Potard, U.S., Butler, J.P., and Wang, N., Cytoskeletal mechanics in confluent epithelial cells probed through integrins and E-cadherins, Am. J. Physiol., 1997, vol. 5, no. 1, pp. 1654–1663.CrossRefGoogle Scholar
  93. Riveline, D., Zamir, E., Balaban, N.Q., et al., Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism, J. Cell Biol., 2001, vol. 153, no. 6, pp. 1175–1186.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Robbie, D.L., Tensional forces in the human body, Orthop. Rev., 1977, vol. 6, pp. 45–48.Google Scholar
  95. Ross, T.D., Coon, B.G., Yun, S., et al., Integrins in mechanotransduction, Curr. Opin. Cell Biol., 2013, vol. 25, no. 5, pp. 613–618.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schlegelmilch, K., Mohseni, M., Kirak, O., et al., Yap1 acts downstream of alpha-catenin to control epidermal proliferation, Cell, 2011, vol. 144, no. 5, pp. 782–795.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Snelson, K., Continuous tension, discontinuous compression structures, US Patent no. 3169611, February 16, 1965.Google Scholar
  98. Stamenovic, D., Fredberg, J., Wang, N., et al., A microstructural approach to cytoskeletal mechanics based on tensegrity, J. Theor. Biol., 1996, vol. 181, no. 2, pp. 125–136.PubMedCrossRefGoogle Scholar
  99. Stamenovic, D., Mijailovich, S.M., Tolic-Norrelykke, I.M., et al., Cell prestress. II. Contribution of microtubules, Am. J. Physiol. Cell Physiol., 2002, vol. 282, no. 3, pp. 617–624.CrossRefGoogle Scholar
  100. Stanwix, H., Interview with Donald E. Ingber, Nanomedicine, 2014, vol. 9, no. 7, pp. 949–954.CrossRefGoogle Scholar
  101. Swanson, R.L., Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research-a review and analysis, J. Am. Osteop. Assoc., 2013, vol. 113, no. 1, pp. 34–52.CrossRefGoogle Scholar
  102. Thompson, D.W., On Growth and Form, Cambridge: University Press, Cambridge, 1917.CrossRefGoogle Scholar
  103. Tremblay, A.M. and Camargo, F.D., Hippo signaling in mammalian stem cells, Semin. Cell Dev. Biol., 2012, vol. 23, no. 7, pp. 818–826.PubMedCrossRefGoogle Scholar
  104. Wada, K.I., Itoga, K., Okano, T., et al., Hippo pathway regulation by cell morphology and stress fibers, Development, 2001, vol. 138, no. 18, pp. 3907–3914.CrossRefGoogle Scholar
  105. Wang, N. and Ingber, D.E., Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension, Biophys. J., 1994, vol. 66, no. 6, pp. 2181–2189.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wang, N. and Ingber, D.E., Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry, Biochem. Cell Biol., 1995, vol. 73, nos. 7–8, pp. 1–9.Google Scholar
  107. Wang, N., Butler, J.P., and Ingber, D.E., Mechanotransduction across the cell surface and through the cyto skeleton. Science, 1993, vol. 260, no. 5111, pp. 1124–1127.PubMedCrossRefGoogle Scholar
  108. Wang, N., Naruse, K., Stamenovic, D., et al., Mechanical behavior in living cells consistent with the tensegrity model, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 14, pp. 7765–7770.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wang, N., Tolic-Norrelykke, I.M., Chen, J., et al., Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells, Am. J. Physiol. Cell Physiol., 2002, vol. 282, no. 3, pp. 606–616.CrossRefGoogle Scholar
  110. Waterman-Storer, C.M. and Salmon, E.D., Acto-myosin based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling, J. Cell Biol., 1997, vol. 139, no. 2, pp. 417–434.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Weibel, E.R., What makes a good lung, Swiss Med Wkly, 2009, vol. 139, nos. 27–28, pp. 375–386.PubMedGoogle Scholar
  112. Wolpert, L., Positional information and pattern formation, Curr. Top. Dev. Biol., 2016, no. 117, pp. 597–608.PubMedCrossRefGoogle Scholar
  113. Wozniak, M., Fausto, A., Carron, C.P., et al., Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression, J. Bone Miner. Res., 2000, vol. 15, no. 9, pp. 1731–1745.PubMedCrossRefGoogle Scholar
  114. Wozniak, M.A. and Chen, C.S., Mechanotransduction in development: a growing role for contractility, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, no. 1, pp. 34–43.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yoshiba, S., Shiratori, H., Kuo, I.Y., et al., Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2, Science, 2012, vol. 338, no. 6104, pp. 226–231.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zanotti, G. and Guerra, C., Is tensegrity a unifying concept of protein folds, FEBS Lett., 2003, vol. 534, nos. 1–3, pp. 7–10.PubMedCrossRefGoogle Scholar
  117. Zhao, B., Wei, X., and Li, W., et al., Inactivation of yap oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev., 2007, vol. 21, no. 21, pp. 2747–2761.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zheng, J., Birktoft, J.J., Chen, Y., et al., From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal, Nature, 2009, vol. 461, no. 7260, pp. 74–77.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Experimental MedicineSt. PetersburgRussia
  2. 2.Faculty of BiologySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Faculty of Natural Sciences, Geography, and TourismLeningrad State UniversityPushkin, St. PetersburgRussia

Personalised recommendations