Skip to main content
Log in

Aorta, pulmonary artery, and blood flows on them in chickens in the second half of embryogenesis and after hatching

  • Developmental Physiology
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The aim of the study was to determine changes in the blood flow in arterial trunks (coming out of the heart of chickens) by changes of the lumen of these arteries during embryogenesis (on the 10th, 15th, and 19th days) and 6 days after the hatching. For this purpose, posthumous morphometry of aorta, pulmonary arteries, and arterial (Botallo’s) ducts (AD) from their exit from the heart until final extraorgan branching was conducted. It was demonstrated that, in this period, (1) initial lumens of aorta and pulmonary arteries are equal to each other and are equally increased (with temporary stop in last quarter of embryogenesis) with an increase of the body weight (BW); (2) the portion of the right ventricle in a total blood circulation minute volume (BCMV) is somewhat smaller than the portion of the left ventricle, but it approaches equality to it by the end of embryogenesis; (3) with the growth of embryos, the portion of total BCMV flowing through the anterior (before the inflow of AD into the aorta) part of the body decreases (from 41 to 33%); that in the average part increases (from 17 to 31%); that in the posterior part (after bifurcation of aorta), where chorioallantoic membrane (CAM) is located, remains almost unchanged; (4) after the hatching (and disappearance of CAM), BCMV of the left ventricle multiply increases due to the junction of two blood flows from the heart (through the ascending aorta and AD) into a single flow, which flows sequentially by lesser and greater circulations, resulting in multiple increase in the organ blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agren, P., Cogolludo, A.L., Kessels, C.G., Perez-Vizcaιno, F., De Mey, J.G., Blanco, C.E., and Villamor, E., Ontogeny of chicken ductus arteriosus response to oxygen and vasoconstrictors, Am. J. Physiol., 2007, vol. 292, pp. R485–R495.

    CAS  Google Scholar 

  • Angelini, A., Allan, L.D., Anderson, R.H., Crawford, D.C., Chitta, S.K., and Ho, S.Y., Measurements of the dimensions of the aortic and pulmonary pathways in the human fetus: a correlative echocardiographic and morphometric study, Br. Heart J., 1988, vol. 60, pp. 221–226.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Attinger, E.O., Sugavara, H., Navarro, A., Riccetto, A., and Martin, R., Pressure-flow relations in dog arteries, Circ. Res., 1966, vol. 19, no. 2, pp. 230–246.

    Article  PubMed  CAS  Google Scholar 

  • Belanger, C., Copeland, J., Muirhead, D., Heinz, D., and Dzialowski, E.M., Morphological changes in the chicken ductus arteriosi during closure at hatching, Anat. Rec., 2008, vol. 291, pp. 1007–1015.

    Article  Google Scholar 

  • Belichenko, V.M. and Shoshenko, K.A., Circulatory system in chicken skeletal muscle in the second half of embryogenesis: shape, blood flow, and vascular reactivity, Russ. J. Dev. Biol., 2009, vol. 40, no. 2, pp. 95–103.

    Article  CAS  Google Scholar 

  • Belichenko, V.M., Aizman, R.I., Khodyrev, E.V., Turganbaeva, A.S., and Shoshenko, K.A., Blood flow in skeletal muscles of chicken in the embryonic and early postembryonic periods, Ross. Fiziol. Zh. im. I.M. Sechenova, 2011, vol. 97, no. 7, pp. 733–743.

    PubMed  CAS  Google Scholar 

  • Broekhuizen, M.L., Hogers, B., De Ruiter, M.C., Poelmann, R.E., Gittenberger de Groot, A.C., and Wladimiroff, J.W., Altered hemodynamics in chick embryos after extraembryonic venous obstruction, Ultrasound. Obstet. Gynecol., 1999, vol. 13, no. 6, pp. 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Burggren, W., Khorrami, Sh., Pinder, A., and Sun, T., Body, eye, and chorioallantoic vessel growth are not dependent on cardiac output level in day 3–4 chicken embryos, Am. J. Physiol., 2004, vol. 287, pp. R1399–R1406.

    CAS  Google Scholar 

  • Carlson, B., Patten’s Foundations of Embryology, New York: McGraw-Hill, 1981.

    Google Scholar 

  • Caro, C.G., Pedley, T.G., Schroter, R.G., and Seed, W.A., The Mechanics of the Circulation, New York: Oxford University Press, 1978.

    Google Scholar 

  • Chaoui, R., Heling, K.S., Taddei, F., and Bollmann, R., Doppler echocardiographic analysis of blood flow through the fetal aorta and pulmonary valve in the second half of pregnancy, Geburtshilfe Frauenheilkd, 1995, vol. 55, no. 4, pp. 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Cogolludo, A.L., Moral-Sanz, J., van der Sterren, S., Frazziano, G., van Cleef, A.N., Menendez, C., Zoer, B., Moreno, E., Roman, A., Perez-Vizcaino, F., and Villamor, E., Maturation of O2 sensing and signaling in the chicken ductus arteriosus, Am. J. Physiol., 2009, vol. 297, pp. L619–L630.

    CAS  Google Scholar 

  • Felmeden, D.C., Blann, A.D., and Lip, G.Y.H., Angiogenesis: basic pathophysiology and implications for disease, Eur. Heart J., 2003, vol. 24, pp. 586–603.

    Article  PubMed  CAS  Google Scholar 

  • Fisinin, V.I., Zhuravlev, I.V., and Aidinyan, T.G., Embrional’noe razvitie ptitsy (Bird Embryonic Development), Moscow: Agropromizdat, 1990.

    Google Scholar 

  • Gardiner, H.M., Pasquini, L., Wolfenden, J., Barlow, A., Li, W., Kulinskaya, E., and Henein, M., Myocardial tissue Doppler and long axis function in the fetal heart, J. Cardiol., 2006, vol. 113, no. 1, pp. 39–47.

    Google Scholar 

  • Hu, N. and Clark, E.B., Hemodynamics of the stage 12 to stage 29 chick embryo, Circ. Res., 1989, vol. 65, pp. 1665–1670.

    Article  PubMed  CAS  Google Scholar 

  • Itskovitz, J., La Gamma, E.F., and Rudolph, A.M., Effects of cord compression on fetal blood flow distribution and O2 delivery, Am. J. Physiol., 1987, vol. 252, no. 1, Pt 2, pp. H100–H109.

    PubMed  CAS  Google Scholar 

  • Lee, S.H., Hungerford, J.E., Little, C.D., and Iruela-Arispe, M.L., Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall, Dev. Dyn., 1997, vol. 209, pp. 342–352.

    Article  PubMed  CAS  Google Scholar 

  • Lingman, G. and Marsál, K., Fetal central blood circulation in the third trimester of normal pregnancy—a longitudinal study. II. Aortic blood velocity waveform, Early Hum. Dev., 1986, vol. 13, no. 2, pp. 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Lucitti, J.L., Tobita, K., and Keller, B.B., Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo, J. Exp. Biol., 2005, vol. 208, pp. 1877–1885.

    Article  PubMed  Google Scholar 

  • Mielke, G. and Benda, N., Cardiac output and central distribution of blood flow in the human fetus, Circulation, 2001, vol. 103, pp. 1662–1668.

    Article  PubMed  CAS  Google Scholar 

  • Mulder, A.L.M., Van Golde, J.C., Prinzen, F.W., and Blanco, C.E., Cardiac output distribution in response to hypoxia in the chick embryo in the second half of the incubation time, J. Physiol., 1998, vol. 508, pp. 281–287.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mulder, A.L.M., Miedema, A., De Mey, J.G.R., Giussani, D.A., and Blanco, C.E., Sympathetic control of the cardiovascular response to acute hypoxemia in the chick embryo, Am. J. Physiol., 2002, vol. 282, pp. R1156–R1163.

    CAS  Google Scholar 

  • Nathanielsz, P.W. and Hanson, M.A., The fetal dilemma: spare the brain and spoil the liver, J. Physiol., 2003, vol. 548, no. 2, p. 333.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Poutanen, T., Tikanoja, T., Sairanen, H., and Jokinen, E., Normal aortic dimensions and flow in 168 children and young adults, Clin. Physiol. Funct. Imaging, 2003, vol. 23, no. 4, pp. 224–229.

    Article  PubMed  Google Scholar 

  • Rudolph, A.M. and Heymann, M.A., Circulatory changes during growth in the fetal lamb, Circ. Res., 1970, vol. 26, pp. 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, A.M. and Heymann, M.A., Fetal and neonatal circulation and respiration, Annu. Rev. Physiol., 1974, vol. 36, pp. 187–207.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, A.M., Distribution and regulation of blood flow in the fetal and neonatal lamb, Circ. Res., 1985, vol. 57, pp. 811–821.

    Article  PubMed  CAS  Google Scholar 

  • Savolainen, S.M., Foley, J.F., and Elmore, A., Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5, Toxicol. Pathol., 2009, vol. 37, pp. 395–414.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sedmera, D., Pexieder, T., Vuillemin, M., Thompson, R.P., and Anderson, R.H., Developmental patterning of the myocardium, Anat. Rec., 2000, vol. 258, pp. 319–337.

    Article  PubMed  CAS  Google Scholar 

  • Shoshenko, K.A., Golub’, A.S., Brod, V.I., Barbashina, N.E., Ivanova, S.F., Krivoshapkin, A.L., and Osipov, V.V., Arkhitektonika krovenosnogo rusla (Vasculature Architectonics), Novosibirsk: Nauka, 1982.

    Google Scholar 

  • Stevanov, M., Baruthio, J., Musse, O., Gounot, D., and Armspach, J.P., Determination of vessel cross section for flow rate quantification, Magn. Reson. Imaging, 2001, vol. 19, no. 6, pp. 891–897.

    Article  PubMed  CAS  Google Scholar 

  • Turganbaeva, A.S., Belichenko, V.M., and Shoshenko, K.A., Blood flow in the brain and liver of chicken in embryonal and early postembryonal periods, Ross. Fiziol. Zh. im. I.M. Sechenova, 2011, vol. 97, no. 12, pp. 1361–1373.

    PubMed  CAS  Google Scholar 

  • Vimpeli, T., Huhtala, H., Wilsgaard, T., and Acharya, G., Fetal aortic isthmus blood flow and the fraction of cardiac output distributed to the upper body and brain at 11–20 weeks of gestation, Ultrasound. Obstet. Gynecol., 2009, vol. 33, no. 5, pp. 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Vince, M.A., Behaviour and aeration of the respiratory system in the domestic fowl embryo, J. Physiol., 1976, vol. 263, pp. 465–474.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vroomene, de M., Takahashi, Y., Roman, C., and Heymann, M.A., Calcitonin gene-related peptide increases pulmonary blood flow in fetal sheep, Am. J. Physiol., 1998, vol. 274, no. 2, pp. H277–H282.

    Google Scholar 

  • Wang, Y., Dur, O., Patrick, M.J., Tinney, J.P., Tobita, K., Keller, B.B., and Pekkan, K., Aortic arch morphogenesis and flow modeling in the chick embryo, Ann. Biomed. Eng., 2009, vol. 37, no. 6, pp. 1069–1081.

    Article  PubMed  Google Scholar 

  • White, P.T., Experimental studies on the circulatory system of the late chick embryo, Exp. Biol., 1974, vol. 61, pp. 571–592.

    CAS  Google Scholar 

  • Yang, A. and Siegel, P.B., Late embryonic and early postnatal growth of heart and lung white leghorn chickens, Growth Dev. Aging, 1997, vol. 61, nos. 3–4, pp. 119–126.

    PubMed  CAS  Google Scholar 

  • Zahka, K.G., Hu, N., Brin, K.P., Yin, F.C.P., and Clark, E.B., Aortic impedance and hydraulic power in the chick embryo from stages 18 to 29, Circ. Res., 1989, vol. 64, pp. 1091–1095.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Shoshenko.

Additional information

Original Russian Text © V.M. Belichenko, E.V. Khodyrev, C.A. Shoshenko, 2014, published in Ontogenez, 2014, Vol. 45, No. 2, pp. 89–101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belichenko, V.M., Khodyrev, E.V. & Shoshenko, C.A. Aorta, pulmonary artery, and blood flows on them in chickens in the second half of embryogenesis and after hatching. Russ J Dev Biol 45, 66–77 (2014). https://doi.org/10.1134/S1062360414020027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360414020027

Keywords

Navigation