Concept of T-Cell Genus as a Basis for Analysis of the Results of Cytogenetic Studies after Local Bone Marrow Exposure

Abstract—

Evaluation of the frequency of chromosome translocations in peripheral blood T-lymphocytes is a generally accepted method of retrospective biodosimetry. Accidental contamination of the Techa River (Chelyabinsk Oblast) in 1950s with bone-seeking long-lived strontium-90 gave an opportunity to evaluate the effect of local red bone marrow (RBM) exposure on translocation formation in the peripheral T-lymphocytes of local inhabitants. The studies of the inhabitants using fluorescent in situ hybridization (FISH) showed that RBM doses calculated based on FISH results were lower than those estimated based on 90Sr body burden measurements. The current study presents analytical review of the published data dealing with the most important processes of the T-lymphocyte development and formation of chromosome aberrations: characteristics of the main compartments where the exposure of T-cell occurs; assessment of the time spent by T-lymphocytes and their progenitors in these compartments; analysis of the dynamics of T-cell populations (proliferation and death); age-related aspects. The paper presents a concept of T-cell Genus (TG) united all the progeny of T progenitor with inheritable specific aberrations that could have developed in bone marrow.

This is a preview of subscription content, access via your institution.

Fig. 1.

Notes

  1. 1.

    Whole chromosome probes for the coloration of three chromosome pairs (that is, approximately 23% of the genome) were used.

  2. 2.

    CD molecules can act in different ways often acting as receptors or ligands (molecules that activate the receptor) important for the cell. They can initiate the signaling cascade changing the cell behavior. Some CD proteins play no role in cell signals, but have other functions, such as cell adhesion. There are about 250 different CD proteins.

  3. 3.

    The main RTE markers are the following: (1) T cell excision circle (TREC), extrachromosomal rings, the product of episomal DNA, which are obtained when rearranging the ТКР genes and which is not replicative, that is, is not transmitted to descendant cells during maternal RTE cell division [22]; (2) the CD31 marker identifies the subgroup of naive cells, in which there is a high level of TREC; (3) protein tyrosine kinase 7 (PTK7) is expressed by a subpopulation of naive CD31+CD4+ cells with a high content of TREC; (4) Ki67 is not an RTE marker, but is a cell cycle marker, which is expressed only by proliferative cells at the stage G1. This allows us to determine what part of the cell population is currently dividing.

  4. 4.

    Ahmed [41, 57] described different models of memory T cell differentiation. The model type is not essential for the purposes of our study. We describe a linear differentiation model.

REFERENCES

  1. 1

    IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergences, International Atomic Energy Agency, 2011.

    Google Scholar 

  2. 2

    Nugis, V.Yu., Sevan’kaev, A.V., Khvostunov, I.K., et al., The results of 25 year-cytogenetic investigation of survivors exposed to different doses of irradiation in the Chernobyl accident, Radiats. Biol. Radioecol., 2011, vol. 51, no. 1, pp. 81–90.

    PubMed  Google Scholar 

  3. 3

    Khvostunov, I.K., Snigiryova, G.P., Moiseenko, V.V., and Lloyd, D.C., A follow-up cytogenetic study of workers highly exposed inside the Chernobyl sarcophagus, Radiat. Prot. Dosim., 2015, vol. 167, no. 4, pp. 405–418. http://www.memoid.ru/node/Perspektivy_atomnoj_ ehnergetiki_sovremennoj_Rossii-cite_ref-.D0.B0.D1. 82.D0.BE.D0.BC_12-7.https://doi.org/10.1093/rpd/ncu351

  4. 4

    Biologicheskaya indikatsiya radiatsionnogo vozdeistviya na organizm cheloveka s ispol’zovaniem tsitogeneticheskikh metodov: med. tekhnologiya № FS-2007/015-U (Biological Indication of Radiation Effects on the Human Body Using Cytogenetic Methods: Medical Technology no. FS-2007/015-U), Moscow: Ross. Nauchn. Tsentr Rentgenoradiol., Inst. Obshch. Genet. im. N.I. Vavilova, 2007.

  5. 5

    Nowell, P.C., Phytohemagglutinin—an initiator of mitosis in cultures of normal human leukocytes, Cancer Res., 1960, vol. 20, no. 4, pp. 462–466.

    CAS  PubMed  Google Scholar 

  6. 6

    Sotnik, N.V., Osovets, S.V., Scherthan, H., and Azizova, T.V., mFISH analysis of chromosome aberrations in workers occupationally exposed to mixed radiation, Radiat. Environ. Biophys., 2014, vol. 53, no. 2, pp. 347–354. https://doi.org/10.1007/s00411-014-0536-7

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Tawn, E.J., Whitehouse, C.A., Holdsworth, D., et al., mBAND analysis of chromosome aberrations in lymphocytes exposed in vitro to α-particles and γ-rays, Int. J. Radiat. Biol., 2008, vol. 84, no. 1, pp. 1–7. https://doi.org/10.1080/09553000802078412

    Article  Google Scholar 

  8. 8

    Tawn, E.J., Curwen, G.B., Jonas, P., et al., Chromosome aberrations determined by FISH in radiation workers from the Sellafield Nuclear Facility, Radiat. Res., 2015, vol. 184, no. 3, pp. 296–303. https://doi.org/10.1667/RR14125.1

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Pilinskaia, M.A., Dybskii, S.S., Skaletskii, Yu.N., et al., The experience of fish technique application for reconstruction of individual radiation doses in Chernobyl liquidators in the framework of Ukrainian-American project “Leukemia,” Tsitol. Genet., 2006, vol. 40, no. 3, pp. 34–39.

    CAS  PubMed  Google Scholar 

  10. 10

    Hande, M.P., Azizova, T.V., Burak, L.E., et al., Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study, Genes Chromosomes Cancer, 2005, vol. 44, no. 1, pp. 1–9. https://doi.org/10.1002/gcc.20217

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Curwen, G.B., Sotnik, N.V., Cadwell, K.K., et al., Chromosome aberrations in workers with exposure to α-particle radiation from internal deposits of plutonium: expectations from in vitro studies and comparisons with workers with predominantly external γ-radiation exposure, 2015, vol. 54, no. 2, pp. 195–206. https://doi.org/10.1007/s00411-015-0585-6

  12. 12

    Sotnik, N.V. and Azizova, T.V., Using mFISH and mBAND for bioindication of internal α-radiation, Radiats. Biol. Radioecol., 2016, vol. 56, no. 2, pp. 156–162.

    CAS  PubMed  Google Scholar 

  13. 13

    Degteva, M.O., Shagina, N.B., Vorobiova, M.I., et al., Contemporary understanding of radioactive contamination of the Techa River in 1949–1956, Radiats. Biol. Radioecol., 2016, vol. 56, no. 5, pp. 523–534. https://doi.org/10.7868/S0869803116050039

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Degteva, M.O., Napier, B.A., Tolstykh, E.I., et al., Enhancements in the Techa River dosimetry system: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures, Health Phys., 2019, vol. 117, no. 4, pp. 378–387. https://doi.org/10.1097/HP.0000000000001067

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Davis, F.G., Krestinina, L.Yu., Preston, D., et al., Solid cancer incidence in the techa river incidence cohort: 1956–2007, Radiat. Res., 2015, vol. 184, pp. 56–65. https://doi.org/10.1667/RR14023.1

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Krestinina, L.Yu., Davis, F.G., Schonfeld, S., et al., Leukaemia incidence in the Techa River Cohort: 1953–2007, Br. J. Cancer, 2013, vol. 109, pp. 2886–2893. https://doi.org/10.1038/bjc.2013.614

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Schonfeld, S.J., Krestinina, L.Yu., Epifanova, S.B., et al., Solid cancer mortality in the Techa River Cohort (1950–2007), Radiat. Res., 2013, vol. 179, no. 2, pp. 183–189. https://doi.org/10.1667/RR2932.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Napier, B.A., Degteva, M.O., Shagina, N.B., and Anspaugh, L.R., Uncertainty analysis for the techa river dosimetry system, Med. Radiol. Radiat. Saf., 2013, vol. 58, no. 1, pp. 5–28.

    Google Scholar 

  19. 19

    Napier, B.A., Eslinger, P.W., Tolstykh, E.I., et al., Calculations of individual doses for techa river cohort members exposed to atmospheric radioiodine from Mayak releases, J. Environ. Radioact., 2017, vols. 178–179, pp. 156–167. https://doi.org/10.1016/j.jenvrad.2017.08.013

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Degteva, M.O., Tolstykh, E.I., Suslova, K.G., et al., Analysis of the results of long-lived radionuclide body burden monitoring in residents of the Urals region, Radiat. Hygiene, 2018, vol. 11, no. 3, pp. 30–39. https://doi.org/10.21514/1998-426X-2018-11-3-30-39

    Article  Google Scholar 

  21. 21

    Shagina, N.B., Tolstykh, E.I., Degteva, M.O., et al., Age and gender specific biokinetic model for strontium in humans, J. Radiol. Prot., 2015, vol. 35, no. 1, pp. 87–127. https://doi.org/10.1088/0952-4746/35/1/87

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Vozilova, A.V., Shagina, N.B., Degteva, M.O., et al., Preliminary FISH-based assessment of external dose for residents exposed on the Techa River, Radiat. Res., 2012, vol. 177, no. 1, pp. 84–91.

    CAS  Article  Google Scholar 

  23. 23

    Vozilova, A.V., Shagina, N.B., Degteva, M.O., et al., FISH analysis of translocations induced by chronic exposure to Sr radioisotopes: second set of analysis of the Techa River Cohort, Radiat. Prot. Dosim., 2014, vol. 159, nos. 1–4, pp. 34–37. https://doi.org/10.1093/rpd/ncu131

    CAS  Article  Google Scholar 

  24. 24

    Degteva, M.O., Shishkina, E.A., Tolstykh, E.I., et al., Application of EPR and FISH methods to dose reconstruction for people exposed in the Techa River area, Radiats. Biol. Radioecol., 2017, vol. 57, no. 1, pp. 30–41. https://doi.org/10.7868/S0869803117010052

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Bains, I., Thiébaut, R., Yates, A.J., and Callard, R., Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output, J. Immunol., 2009, vol. 183, no. 7, pp. 4329–4336. https://doi.org/10.4049/jimmunol.0900743

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Steinmann, G.G., Klaus, B., and Muller-Hermelink, H.K., The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study, Scand. J. Immunol., 1985, vol. 22, pp. 563–575. https://doi.org/10.1111/j.1365-3083.1985.tb01916.x

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Braber, I., Mugwagwa, T., Vrisekoop, N., et al., Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans, Immunity, 2012, vol. 36, no. 2, pp. 288–297. https://doi.org/10.1016/j.immuni.2012.02.006

    CAS  Article  Google Scholar 

  28. 28

    Britanova, O.V., Shugay, M., Merzlyak, E.M., et al., Dynamics of individual T cell repertoires: from cord blood to centenarians, J. Immunol., 2016, vol. 196, no. 12, pp. 5005–5013. https://doi.org/10.4049/jimmunol.1600005

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Naumova, E.N., Gorski, J., and Naumov, Y.N., Two compensatory pathways maintain long-term stability and diversity in CD8 T cell memory repertoires, J. Immunol., 2009, vol. 183, no. 4, pp. 2851–2858. https://doi.org/10.4049/jimmunol.0900162

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Yoshida, K., Cologne, J.B., Cordova, K., et al., Aging-related changes in human T-cell repertoire over 20 years delineated by deep sequencing of peripheral T-cell receptors, Exp. Gerontol., 2017, vol. 1, no. 96, pp. 29–37. https://doi.org/10.1016/j.exger.2017.05.015

    CAS  Article  Google Scholar 

  31. 31

    Linton, P.J. and Dorshkind, K., Age-related changes in lymphocyte development and function, Nat. Immunol., 2004, vol. 5, no. 2, pp. 133–139. https://doi.org/10.1038/ni1033

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Sambandam, A., Bell, J.J., Schwarz, B.A., et al., Progenitor migration to the thymus and T cell lineage commitment, Immunol. Res., 2008, vol. 42, nos. 1–3, pp. 65–74. https://doi.org/10.1007/s12026-008-8035-z

    Article  PubMed  Google Scholar 

  33. 33

    Müller, L. and Pawelec, G., Introduction to ageing of the adaptive immune system, in Immunosenescence: Psychological and Behavioural Determinants, Bosch, J.A., Phillips, A.C., and Lord, J.M., Eds., New York: Springer, 2013, pp. 17–33.

    Google Scholar 

  34. 34

    Krueger, A., Zietara, N., and Lyszkiewicz, M., T-cell development by the numbers, Trends Immunol., 2017, vol. 38, no. 2, pp. 128–139. https://doi.org/10.1016/j.it.2016.10.007

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Zlotoff, D.A. and Bhandoola, A., Hematopoietic progenitor migration to the adult thymus, Ann. N.Y. Acad. Sci., 2011, vol. 1217, pp. 122–138. https://doi.org/10.1111/j.1749-6632.2010.05881.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Wagner, U., Schatz, A., Baerwald, C., and Rossol., M., Brief report: deficient thymic output in rheumatoid arthritis despite abundance of prethymic progenitors, Arthritis Rheum., 2013, vol. 65, no. 10, pp. 2567–2572. https://doi.org/10.1002/art.38058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Kyoizumi, S., Kubo, Y., Kajimura, J., et al., Age-associated changes in the differentiation potentials of human circulating hematopoietic progenitors to T- or NK-lineage cells, J. Immunol., 2013, vol. 190, no. 12, pp. 6164–6172. https://doi.org/10.4049/jimmunol.1203189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Bains, I., Mathematical modelling of T cell homeostasis, Ph.D. Thesis, London: University College, 2010. http://discovery.ucl.ac.uk/20159/1/20159.pdf. Accessed August 29, 2019.

  39. 39

    Stewart, F.A., Akleyev, A.V., Hauer-Jensen, M., et al., Early and Late Effects of Radiation in Normal Tissues and Organs—Threshold Doses for Tissue Reactions in a Radiation Protection Context, Annals of the ICRP, Elsevier, 2012.

  40. 40

    Yassai, M.B., Naumov, Y.N., Naumova, E.N., and Gorski, J., A clonotype nomenclature for T cell receptors, Immunogenetics, 2009, vol. 61, no. 7, pp. 493–502. https://doi.org/10.1007/s00251-009-0383-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Broere, F., Apasov, S.G., Sitkovsky, M.V., and van Eden, W., T cell subsets and T cell-mediated immunity, in Principles of Immunopharmacology, Nijkamp, F.P. and Parnham, M., Eds., Birkhauser, Basel: Springer, 2011, pp. 15–27.

  42. 42

    De Boer, R.J. and Perelson, A.S., Quantification T lymphocyte turnover, J. Theor. Biol., 2013, vol. 327, pp. 45–87. https://doi.org/10.1016/j.jtbi.2012.12.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Douek, D.C., Betts, M.R., and Hill, B.J., Evidence for increased T cell turnover and decreased thymic output in HIV infection, J. Immunol., 2001, vol. 167, no. 11, pp. 6663–6668. https://doi.org/10.4049/jimmunol.167.11.6663

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Bloemers, B.L., Bont, L., de Weger, R.A., et al., Decreased thymic output accounts for decreased naive T cell numbers in children with down syndrome, J. Immunol., 2011, vol. 186, no. 7, pp. 4500–4507. https://doi.org/10.4049/jimmunol.1001700

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Flores, K., Li, J., Sempowski, G.D., et al., Analysis of the human thymic perivascular space during aging, J. Clinic. Investigate, 1999, vol. 104, no. 8, pp. 1031–1039. https://doi.org/10.1172/jci7558

    CAS  Article  Google Scholar 

  46. 46

    Ye, P. and Kirschner, D.E., Measuring emigration of human thymocytes by T-cell receptor excision circles, Crit. Rev. Immunol., 2002, vol. 22, nos. 5–6, pp. 483–497.

    CAS  Article  Google Scholar 

  47. 47

    Ye, P. and Kirschner, D.E., Reevaluation of T cell receptor excision circles as a measure of human recent thymic emigrants, J. Immunol., 2002, vol. 168, no. 10, pp. 4968–4979. https://doi.org/10.4049/jimmunol.168.10.4968

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Haines, C.J., Giffon, T.D., Lu, L.S., et al., Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function, J. Exp. Med., 2009, vol. 206, no. 2, pp. 275–285. https://doi.org/10.1084/jem.20080996

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Aguilera-Sandoval, C.R., Yang, O.O., Jojic, N., et al., Supranormal thymic output up to 2 decades after HIV-1 infection, AIDS, 2016, vol. 30, no. 5, pp. 701–711. https://doi.org/10.1097/QAD.0000000000001010.

  50. 50

    Fink, P.J., The biology of recent thymic emigrants, Annu Rev. Immunol., 2013, vol. 31, pp. 31–50. https://doi.org/10.1146/annurev-immunol-032712-100010

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Vrisekoop, N., den Braber, I., de Boer, A.B., et al., Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 16, pp. 6115–6120. https://doi.org/10.1073/pnas.0709713105

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Naylor, K., Li, G., Vallejo, A.N., et al., The influence of age on T cell generation and TCR diversity, J. Immunol., 2005, vol. 174, no. 11, pp. 7446–7452. https://doi.org/10.4049/jimmunol.174.11.7446

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Abdulahad, W.H., van der Geld, Y.M., Stegeman, C.A., et al., Persistent expansion of CD4+ effector memory T cells in Wegener’s granulomatosis, Kidney Int., 2006, vol. 70, no. 5, pp. 938–947. https://doi.org/10.1038/sj.ki.5001670

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Huenecke, S., Behl, M., Fadler, C., et al., Age-matched lymphocyte subpopulation reference values in childhood and adolescence: application of exponential regression analysis, Eur. J. Haematol., 2008, vol. 80, no. 6, pp. 532–539. https://doi.org/10.1111/j.1600-0609.2008.01052.x

    Article  PubMed  Google Scholar 

  55. 55

    Yan, J., Greer, J.M., Hull, R., et al., The effect of ageing on human lymphocyte subsets: comparison of males and females, Immun. Ageing, 2010, vol. 7, p. 4. https://doi.org/10.1186/1742-4933-7-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Pido-Lopez, J., Imami, N., and Aspinall, R., Both age and gender affect thymic output: more recent thymic migrants in females than males as they age, Clin. Exp. Immunol., 2001, vol. 125, no. 3, pp. 409–413. https://doi.org/10.1046/j.1365-2249.2001.01640.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Ahmed, R., Bevan, M.J., Reiner, S.L., and Fearon, D.T., The precursors of memory: models and controversies, Nat. Rev. Immunol., 2009, vol. 9, pp. 662–668. https://doi.org/10.1038/nri2619

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Lugli, E., Dominguez, M.H., Gattinoni, L., et al., Superior T memory stem cell persistence supports long-lived T cell memory, J. Clin. Invest., 2013, vol. 123, no. 2, pp. 594–599. https://doi.org/10.1172/JCI66327

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Costa, Del Amo, P., Lahoz-Beneytez, J., Boelen, L., et al., Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness, PLoS Biol., 2018, vol. 16, no. 6. e2005523. https://doi.org/10.1371/journal.pbio.2005523

  60. 60

    Robins, H.S., Campregher, P.V., Srivastava, S.K., et al., Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells, Blood, 2009, vol. 114, no. 19, pp. 4099–4107. https://doi.org/10.1182/blood-2009-04-217604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Fisher, R.A., Corbet, A.S., and Williams, C.B., The relation between the number of species and the number of individuals in a random sample of an animal population, J. Anim. Ecol., 1943, vol. 12, pp. 42–58. https://doi.org/10.2307/1411

    Article  Google Scholar 

  62. 62

    Naumov, Y.N., Naumova, E.N., Clute, S.C., et al., Complex T cell memory repertoires participate in recall responses at extremes of antigenic load, Immunology, 2006, vol. 177, no. 3, pp. 2006–2014. https://doi.org/10.4049/jimmunol.177.3.2006

    CAS  Article  Google Scholar 

  63. 63

    Naumov, Y.N., Naumova, E.N., Yassai, M.B., and Gorski, J., Selective T cell expansion during aging of CD8 memory repertoires to influenza revealed by modeling, J. Immunol., 2011, vol. 186, no. 11, pp. 6617–6624. https://doi.org/10.4049/jimmunol.1100091

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Johnson, P.L., Yates, A.J., Goronzy, J.J., and Antia, R., Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T-cell diversity with age, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 52, pp. 21432–21437. https://doi.org/10.1073/pnas.1209283110

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Venturi, V., Quigley, M.F., Greenaway, H.Y., et al., A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing, J. Immunol., 2011, vol. 186, no. 7, pp. 4285–4294. https://doi.org/10.4049/jimmunol.1003898

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Naumov, Y.N., Naumova, E.N., Hogan, K.T., et al., A fractal clonotype distribution in the CD8+ memory T cell repertoire could optimize potential for immune responses, J. Immunol., 2003, vol. 170, no. 8, pp. 3994–4001. https://doi.org/10.4049/jimmunol.170.8.3994

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Meier, J., Roberts, C., Avent, K., et al., Fractal organization of the human T cell repertoire in health and after stem cell transplantation, Biol. Blood. Marrow Transplant., 2013, vol. 19, no. 3, pp. 366–377. https://doi.org/10.1016/j.bbmt.2012.12.004

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Bolkhovskaya, O.V., Zorin, D.Yu., and Ivanchenko, M.V., Assessing T cell clonal size distribution: a non-parametric approach, arXiv:1404.6790 [q-bio.QM], August 21, 2014. https://arxiv.org/pdf/1404.6790.pdf. Accessed August 29, 2019.

  69. 69

    Robins, H.S., Srivastava, S.K., Campregher, P.V., et al., Overlap and effective size of the human CD8+ T cell receptor repertoire, Sci. Transl. Med., 2010, vol. 2, no. 47, pp. 47–64. https://doi.org/10.1126/scitranslmed.3001442

    CAS  Article  Google Scholar 

  70. 70

    Trepel, F., Number and distribution of lymphocytes in man. A critical analysis, Klin Wochenschr., vol. 52, pp. 511–515 (quoted by [38]).

  71. 71

    Di Rosa, F. and Gebhardt, T., Bone marrow T cells and the integrated functions of recirculating and tissue-resident memory T cells, Front. Immunol., 2016, vol. 7, no. 51. https://doi.org/10.3389/fimmu.2016.00051

  72. 72

    Attaf, M., Huseby, E., and Sewell, A.K., αβ T cell receptors as predictors of health and disease, Cell Mol. Immunol., 2015, vol. 12, no. 4, pp. 391–399. https://doi.org/10.1038/cmi.2014.134

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Schick, P.F., Trepel, F., Lehmann-Brockhaus, E., et al., Autotransfusion of 3H-cytidine-labelled blood lymphocytes in patient with Hodgkin’s and non-Hodgkin patient. I. Limitation of the method, Acta Haematol., 1975, vol. 53, no. 4, pp. 193–205. https://doi.org/10.1159/000208184

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Pabst, R., The spleen in lymphocyte migration, Immunol. Today, 1988, vol. 9, no. 2, pp. 43–45. https://doi.org/10.1016/0167-5699(88)91258-3

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Zhao, E., Xu, H., Wang, L., et al., Bone marrow and the control of immunity, Cell Mol. Immunol., 2012, vol. 9, no. 1, pp. 11–19. https://doi.org/10.1038/cmi.2011.47

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Parretta, E., Cassese, G., Santoni, A., et al., Kinetics of in vivo proliferation and death of memory and naive CD8 T cells: parameter estimation based on 5-bromo-2'-deoxyuridine incorporation in spleen, lymph nodes, and bone marrow, J. Immunol., 2008, vol. 180, no. 11, pp. 7230–7239. https://www.ncbi.nlm.nih.gov/pubmed/18490722.https://doi.org/10.1038/icb.2016.47

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Di Rosa, F., T-lymphocyte interaction with stromal, bone and hematopoietic cells in the bone marrow, Immunol. Cell Biol., 2009, vol. 87, no. 1, pp. 20–29. https://doi.org/10.1038/icb.2008.84

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Di Rosa, F. and Pabst, R., The bone marrow: a nest for migratory memory T cells, Trends Immunol., 2005, vol. 26, no. 7, pp. 360–366. https://doi.org/10.1016/j.it.2005.04.011

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Britanova, O.V., Putintseva, E.V., Shugay, M., et al., Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling, J. Immunol., 2014, vol. 192, no. 6, pp. 2689–2698. https://doi.org/10.4049/jimmunol.1302064

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Tolstykh, E.I., Degteva, M.O., Vozilova, A.V., and Akleyev, A.V., Interpretation of FISH results in the case of nonuniform internal radiation exposure of human body with the use of model approach, Hum. Genet., 2019, vol. 55, no. 10, pp. 1227–1233. https://doi.org/10.1134/S1022795419100132

    CAS  Article  Google Scholar 

  81. 81

    ICRP-67. Age-dependent dose to members of the public from intake of radionuclides. Part 2: Ingestion dose coefficients, ICRP Publication 67, Ann. ICRP, 1993, vol. 23, nos. 3/4, pp. 1–167.

  82. 82

    Suslova, K.G., Khokhryakov, V.F., Sokolova, A.B., and Miller, S.C., 238Pu: a review of the biokinetics, dosimetry, and implications for human exposures, Health Phys., 2012, vol. 102, no. 3, pp. 251–262. https://doi.org/10.1097/hp.0b013e318234899a

    CAS  Article  PubMed  Google Scholar 

  83. 83

    Suslova, K.G., Sokolova, A.B., Krahenbuhl, M.P., and Miller, S.C., The effects of smoking and lung health on the organ retention of different plutonium compounds in the Mayak PA workers, Radiat. Res., 2009, vol. 171, no. 3, pp. 302–309. https://doi.org/10.1667/0033-7587-171.3.302

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Racanelli, V. and Rehermann, B., The liver as an immunological organ, Hepatology, 2006, vol. 43, pp. 54–62. https://doi.org/10.1002/hep.21060

    CAS  Article  Google Scholar 

  85. 85

    Lalor, P.F., Shields, P., Grant, A.J., and Adams, D.H., Recruitment of lymphocytes to the human liver, Immunol. Cell Biol., 2002, vol. 80, pp. 52–64. http://www. nature.com/icb/journal/v80/n1/full/icb20027a.html-aff1.https://doi.org/10.1046/j.1440-1711.2002.01062.x

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. I. Tolstykh.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Statement of Compliance with Standards of Research Involving Humans as Subjects

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tolstykh, E.I., Vozilova, A.V., Degteva, M.O. et al. Concept of T-Cell Genus as a Basis for Analysis of the Results of Cytogenetic Studies after Local Bone Marrow Exposure. Biol Bull Russ Acad Sci 47, 1495–1506 (2020). https://doi.org/10.1134/S1062359020110151

Download citation

Keywords:

  • biodosimetry
  • T cells
  • chromosomal aberrations
  • bone marrow
  • 90Sr
  • Techa River
  • T-cell genus