Use of Plant Antimicrobial Peptides in in vitro Embryogenic Cultures of Larix sibirica

Abstract

The effect of plant antimicrobial peptides on the initiation of callus and embryonal suspensor masses, formation of somatic embryos, and germination of regenerants of Siberian larch has been studied. Protein/peptide extracts isolated from Amarantus retroflexus (seeds), Nigella sativa (seeds), and Elytrigia elongata (spikelets) have been used as objects of plant origin. Peptides have been introduced into the nutrient media at the stage of initiation of embryogenic cultures and somatic embryo germination. The stimulating effect of peptides on the formation of embryogenic cultures of Siberian larch has been found. No other differences in the dynamics of growth in the control and experimental regenerants have been observed. This study is supposed to contribute to enhancing the immunity of the clonal planting stock of Siberian larch.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.

REFERENCES

  1. 1

    Von Aderkas, P. and Anderson, P., Aneuploidy and polyploidization in haploid tissue cultures of Larix decidua,Physiol. Plant., 1993, vol. 88, no. 1, pp. 73–77.

    Article  Google Scholar 

  2. 2

    Von Aderkas, P., Pattanavibool, R., Hristoforoglu, K., and Ma, Y., Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch, Plant Cell, Tiss. Organ Cult., 2003, vol. 75, no. 1, pp. 27–34.

    CAS  Article  Google Scholar 

  3. 3

    De Bolle, M.F., David, K.M., Rees, S.B., Vanderleyden, J., Bruno, P., Camue, A., and Broekaert, W.F., Cloning and characterization of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus caudatus,Plant Mol. Biol., 1993, vol. 22, no. 6, pp. 1187–1190.

    CAS  Article  Google Scholar 

  4. 4

    Broekaert, W.F., Mariën, W., Terras, F.R., De Bolle, M.F., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S.B., and Vanderleyden, J., Antimicrobial peptides from amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins, Biochemistry, 1992, vol. 31, no. 17, pp. 4308–4314.

    CAS  Article  Google Scholar 

  5. 5

    Cairney, J. and Pullman, G.S., The cellular and molecular biology of conifer embryogenesis, New Phytol., 2007, vol. 176, no. 3, pp. 511–536.

    CAS  Article  Google Scholar 

  6. 6

    del Carmen Ramírez-Medeles, M., Aguilar, M.B., Miguel, R.N., Bolaños-Garcia, V.M., Garcia- Hernández, E., and Soriano-García, M., Amino acid sequence, biochemical characterization, and comparative modeling of a nonspecific lipid transfer protein from Amaranthus hypochondriacus,Arch Biochem. Biophys., 2003, vol. 415, no. 1, pp. 24–33.

    Article  Google Scholar 

  7. 7

    Colmer, T.D., Flowers, T.J., and Munns, R., Use of wild relatives to improve salt tolerance in wheat, J. Exp. Bot., 2006, vol. 57, no. 5, pp. 1059–1078.

    CAS  Article  Google Scholar 

  8. 8

    Conforti, F., Statti, G., Loizzo, M.R., Sacchetti, G., Poli, F., and Menichini, F., In vitro antioxidant effect and inhibition of alpha-amylase of two varieties of Amaranthus caudatus seeds, Biol. Pharm. Bull., 2005, vol. 28, no. 6, pp. 1098–1102.

    CAS  Article  Google Scholar 

  9. 9

    Egorov, T.A., Odintsova, T.I., Pukhalsky, V.A., and Grishin, E.V., Diversity of wheat anti-microbial peptides, Peptides, 2005, vol. 26, pp. 2064–2073.

    CAS  Article  Google Scholar 

  10. 10

    Egorov, Ts.A. and Odintsova, T.I., Defense peptides of plant immunity (review), Russ. J. Bioorg. Chem., 2012, vol. 38, no. 1, pp. 1–9.

    CAS  Article  Google Scholar 

  11. 11

    He, F., Xing, P., Bao, Y., Ren, M., Liu, S., Wang, Y., Li, X., and Wang, H., Chromosome pairing in hybrid progeny between Triticum aestivum and Elytrigia elongata,Front. Plant Sci., 2017, vol. 8, p. 2161.

    Article  Google Scholar 

  12. 12

    Hejgaard, J., Dam, J., Petersen, L.C., and Bjorn, S.E., Primary structure and specificity of the major serine proteinase inhibitor of amaranth (Amaranthus caudatus L.) seeds, Biochim. Biophys. Acta, 1994, vol. 1204, no. 1, pp. 68–74.

    CAS  Article  Google Scholar 

  13. 13

    Klimaszewska, K., Cyr, D.R., and Sutton, B.C.S., Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L, In Vitro Cell. Dev. Biol. Plant, 2000, vol. 36, no. 4, pp. 279–286.

    CAS  Article  Google Scholar 

  14. 14

    Klimaszewska, K., Noceda, C., Pelletier, G., Label, P., Rodriguez, R., and Lelu-Walter, M.A., Biological characterization of young and aged embryogenic cultures of Pinus pinaster,In Vitro Cell. Dev. Biol. Plant, 2008, vol. 45, no. 20, pp. 20–33.

    Article  Google Scholar 

  15. 15

    Kruglova, N.N., Egorova, O.V., Sel’dimirova, D.Yu., Zaitsev, D.Yu., and Zinatullina, A.E., Svetovoi mikroskop kak instrument v biotekhnologii rastenii (Light microscope as a tool in plant biotechnology), Inst. Biol. Ufimsk. Nauchn. Tsentra Ross. Akad. Nauk, OOO “Konsaltingovaya firma “Mikroskop Plyus,” Ufa: Gilem, Bashk. Entsikl., 2013.

  16. 16

    Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1973.

    Google Scholar 

  17. 17

    Lelu-Walter, M.A., Bernier-Cardou, M., Klimaszewska, K., Ward, C., and Charest, P.J., Clonal plant production from self-and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis, Plant Cell, Tiss. Organ Cult., 2008, vol. 92, no. 1, pp. 31–45.

    Article  Google Scholar 

  18. 18

    Lelu-Walter, M.A. and Pâques, L.E., Simplified and improved somatic embryogenesis of hybrid larches (Larix × Eurolepis and Larix × Marschlinsii). Perspectives for breeding, Ann. For. Sci., 2009, vol. 66, pp. 104–114.

    Article  Google Scholar 

  19. 19

    Lelu, M.A., Bastien, C., Klimaszewska, K., Ward, C., and Charest, P.J., An improved method for somatic plantlet production in hybrid larch (Larix × leptoeuropaea): Part 1. Somatic embryo maturation, Plant Cell Tiss. Organ Cult., 1994, vol. 36, no. 1, pp. 107–115.

    CAS  Article  Google Scholar 

  20. 20

    Lipkin, A., Anisimova, V., Nikonorova, A., Babakov, A., Krause, E., Bienert, M., Grishin, E., and Egorov, T., An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds, Phytochemistry, 2005, vol. 66, no. 20, pp. 2426–2431.

    CAS  Article  Google Scholar 

  21. 21

    Martins, J.C., Maes, D., Loris, R., Pepermans, H.A., Wyns, L., Willem, R., and Verheyden, P., NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus,J. Mol. Biol., 1996, vol. 258, no. 2, pp. 322–333.

    CAS  Article  Google Scholar 

  22. 22

    Odintsova, T.I., Rogozhin, E.A., Baranov, Yu.V., Musolyamov, A.Kh., Yalpani, N., Egorov, T.A., and Grishin, E.V., Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv, Biochimie, 2008, vol. 90, pp. 1667–1673.

    CAS  Article  Google Scholar 

  23. 23

    Odintsova, T.I., Vassilevski, A.A., Slavokhotova, A.A., Musolyamov, A.K., Finkina, E.I., Khadeeva, N.V., Rogozhin, E.A., Korostyleva, T.V., Pukhalsky, V.A., Grishin, E.V., and Egorov, T.A., A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif, FEBS J., 2009, vol. 276, no. 15, pp. 4266–4275.

    CAS  Article  Google Scholar 

  24. 24

    Oshchepkova, Yu.I., Veshkurova, O.N., Rogozhin, E.A., Musolyamov, A.Kh., Smirnov, A.N., Odintsova, T.I., Egorov, Ts.A., Grishin, E.V., and Salikhov, Sh.I., Isolation of the lipid-transporting protein Ns-LTP1 from seeds of the garden fennel flower (Nigella sativa), Russ. J. Bioorg. Chem., 2009, vol. 35, no. 3, pp. 315–319.

    CAS  Article  Google Scholar 

  25. 25

    Pak, M.E., Ivanitskaya, A.S., Dvoinina, L.M., and Tret’yakova, I.N., Embryogenic potential of long-term proliferating Larix sibirica cell line in vitro, Sib. Lesn. Zh., 2016, no. 1, pp. 27–38.

  26. 26

    Pullman, G.S. and Bucalo, K., Chapter 19: pine somatic embryogenesis using zygotic embryos as explants/plant embryo culture, Meth. Protocols,Meth. Mol. Biol., 2011, vol. 710, pp. 267–291.

    CAS  Article  Google Scholar 

  27. 27

    Rinderle, S.J., Goldstein, I.J., and Remsen, E.E., Physicochemical properties of amaranthin, the lectin from Amaranthus caudatus seeds, Biochemistry, 1990, vol. 29, no. 46, pp. 10555–10561.

    CAS  Article  Google Scholar 

  28. 28

    Rogozhin, E.A., Odintsova, T.I., Musolyamov, A.Kh., Smirnov, A.N., Babakov, A.V., Egorov, Ts.A., and Grishin, E.V., The purification and characterization of a novel lipid transfer protein from caryopsis of barnyard grass (Echinochloa crusgalli), Appl. Biochem. Microbiol., 2009, vol. 45, no. 4, pp. 363–368.

    CAS  Article  Google Scholar 

  29. 29

    Rogozhin, E.A., Oshchepkova, Y.I., Odintsova, T.I., Khadeeva, N.V., Veshkurova, O.N., Egorov, T.A., Grishin, E.V., and Salikhov, S.I., Novel antifungal defensins from Nigella sativa L. seeds, Plant Physiol. Biochem., 2011, vol. 49, no. 2, pp. 131–137.

    CAS  Article  Google Scholar 

  30. 30

    Slavokhotova, A.A., Odintsova, T.I., Rogozhin, E.A., Musolyamov, A.K., Andreev, Y.A., Grishin, E.V., and Egorov, T.A., Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds, Biochimie, 2011, vol. 93, no. 3, pp. 450–456.

    CAS  Article  Google Scholar 

  31. 31

    Slavokhotova, A.A., Rogozhin, E.A., Musolyamov, A.K., Andreev, Y.A., Oparin, P.B., Berkut, A.A., Vassilevski, A.A., Egorov, T.A., Grishin, E.V., and Odintsova, T.I., Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution, Plant. Mol. Biol., 2014, vol. 84, nos. 1–2, pp. 189–202.

    CAS  Article  Google Scholar 

  32. 32

    Tretyakova, I.N., A method for micropropagation of Siberian larch in culture in vitro by somatic embryogenesis in AI medium for plantation forest cultivation, RF Patent No. 2456344, 2012. www.freepatent.ru/images/patents/5/2456344/patent-2456344.pdf.

  33. 33

    Tretyakova, I.N., Embryogenic cell lines and somatic embryogenesis in an vitro culture of Siberian larch, Doklady Biol. Sci., 2013, vol. 450, p. 139–141.

    Article  Google Scholar 

  34. 34

    Tretyakova, I.N. and Barsukova, A.V., Somatic embryogenesis in in vitro culture of three larch species, Russ. J. Dev. Biol., 2012, vol. 43, no. 6, pp. 353–361.

    Article  Google Scholar 

  35. 35

    Tretyakova, I.N. and Barsukova, A.V., Somatic embryogenesis of larches and Siberian stone pine in Siberia, Lesovedenie, 2015, no. 6, pp. 63–70.

  36. 36

    Tretyakova, I.N. and Pak, M.E., Somatic polyembriogenesis of Larix sibirica in embryogenic in vitro culture, Russ. J. Dev. Biol., 2018, vol. 49, no. 4, pp. 222–233.

    Article  Google Scholar 

  37. 37

    Tretyakova, I.N., Pak, M.E., Ivanitskaya, A.S., and Oreshkova, N.V., Peculiarities of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro, Russ. J. Plant Physiol., 2016, vol. 63, no. 6, pp. 800–810.

    CAS  Article  Google Scholar 

  38. 38

    Yang, Y., Fan, X., Wang, L., Zhang, H.Q., Sha, L.N., Wang, Y., Kang, H.Y., Zeng, J., Yu, X.F., and Zhou, Y.H., Phylogeny and maternal donors of Elytrigia Desv. sensu lato (Triticeae; Poaceae) inferred from nuclear internal-transcribed spacer and trnL-F sequences, BMC Plant Biol., 2017, vol. 17, no. 1, p. 207.

    Article  Google Scholar 

Download references

Funding

This work was conducted within the framework of a Budget Project of Sukachev Institute of Forests, Siberian Branch, Russian Academy of Sciences, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences” (project no. 0356-2017-0741) and supported by the Russian Foundation for Basic Research, the Government of Krasnoyarsk region, and the Krasnoyarsk Regional Science Foundation within the framework of research project no. 16-44-240509 “The Development of Biotechnology for the Production of Embryogenic Cultures of Siberian Larch Resistant to Fungal Diseases and Pests with the Use of Protective Antimicrobial Peptides in vitro” and no. 18-44-243004 “In vitro Studies of the Effect of Biologically Active Peptides of Plant and Microbial Origin on the Growth and Development of Conifers in Early Ontogenesis.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. N. Tretyakova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Romanova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tretyakova, I.N., Rogozhin, E.A., Pak, M.E. et al. Use of Plant Antimicrobial Peptides in in vitro Embryogenic Cultures of Larix sibirica. Biol Bull Russ Acad Sci 47, 225–236 (2020). https://doi.org/10.1134/S1062359020030097

Download citation